Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Carcinogenesis ; 43(6): 557-570, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35184170

RESUMO

The factors (environmental and genetic) contributing to basal cell carcinoma (BCC) pathogenesis are well-established; however, effective agents for BCC prevention are marred by toxic side-effects. Herein, we assessed the efficacy of flavonolignan silibinin against ultraviolet B (UVB)-induced BCC in Ptch+/- (heterozygous patched homolog 1 gene) mouse model. Both male and female Ptch+/- mice were irradiated with a 240 mJ/cm2 UVB dose 3 times/week for 26 or 46 weeks, with or without topical application of silibinin (9 mg/200 µl in acetone, applied 30 min before or after UVB exposure). Results indicated that silibinin application either pre- or post-UVB exposure for 26 weeks significantly decreased the number of BCC lesions by 65% and 39% (P < 0.001 for both) and the area covered by BCCs (72% and 45%, P < 0.001 for both), respectively, compared to UVB alone. Furthermore, continuous UVB exposure for 46 weeks increased the BCC lesion number and the BCC area covered by ~6 and ~3.4 folds (P < 0.001), respectively. Notably, even in this 46 week prolonged UVB exposure, silibinin (irrespective of pre- or post-UVB treatment) significantly halted the growth of BCCs by 81-94% (P < 0.001) as well as other epidermal lesions; specifically, silibinin treated tissues had less epidermal dysplasia, fibrosarcoma, and squamous cell carcinoma. Immunohistochemistry and immunofluorescence studies revealed that silibinin significantly decreased basal cell proliferation (Ki-67) and the expression of cytokeratins (14 and 15), and Hedgehog signaling mediators Smo and Gli1 in the BCC lesions. Together, our findings demonstrate strong potential of silibinin to be efficacious in preventing the growth and progression of UVB-induced BCC.


Assuntos
Carcinoma Basocelular , Neoplasias Cutâneas , Animais , Carcinoma Basocelular/tratamento farmacológico , Carcinoma Basocelular/metabolismo , Carcinoma Basocelular/prevenção & controle , Feminino , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Masculino , Camundongos , Receptor Patched-1/genética , Silibina/farmacologia , Silibina/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/prevenção & controle , Raios Ultravioleta/efeitos adversos
2.
Mol Carcinog ; 58(7): 1260-1271, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30912211

RESUMO

Around 80% of nonmelanoma skin cancers (NMSCs) are basal cell carcinoma (BCC), still studies evaluating the efficacy of chemopreventive agents during early stage/s of BCC development are lacking. Accordingly, utilizing the well-established patched (Ptch)+/- mouse model of ultraviolet B (UVB) radiation-induced BCC formation, we excised skin samples from UVB exposed Ptch+/- and Ptch+/+ mice before tumor formation to study the promotion/progression of BCC and to determine the efficacy and target/s of silibinin, a well-known skin cancer chemopreventive agent. UVB exposure for 1 month increased the number of mast cells in Ptch+/- mice by ~48% (P < 0.05), which was completely inhibited by silibinin. Polymerase chain reaction profiler array analysis of skin samples showed strong molecular differences between Ptch+/+ and Ptch+/- mice which were either unexposed or UVB irradiated+/- silibinin treatment. Most notably, silibinin treatment significant decreased the expression of BMP-2, Bbc3, PUMA, and Ccnd1 in Ptch+/- mice irradiated with silibinin + UVB. Additional studies showed that silibinin targets UVB-induced expression of bone morphogenetic protein 2 (BMP-2) in Ptch+/- mouse skin. Last, our studies found that silibinin strongly attenuates UVB-induced BMP-2 expression and DNA damage in Ptch+/- mouse skin ex vivo only after single UVB exposure. Together, our results suggest a possible role of mast cell recruitment and BMP-2 activation in the early stages of BCC development; these are strongly inhibited by silibinin suggesting its possible chemopreventive efficacy against BCC formation in long-term UVB exposure regimen.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Proteína Morfogenética Óssea 2/biossíntese , Carcinoma Basocelular/tratamento farmacológico , Mastócitos/efeitos da radiação , Receptor Patched-1/genética , Silibina/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Raios Ultravioleta/efeitos adversos , Animais , Proteínas Reguladoras de Apoptose/biossíntese , Carcinoma Basocelular/patologia , Quimioprevenção , Ciclina D1/biossíntese , Dano ao DNA/efeitos dos fármacos , Modelos Animais de Doenças , Mastócitos/patologia , Camundongos , Camundongos Transgênicos , Transdução de Sinais , Pele/patologia , Neoplasias Cutâneas/patologia , Proteínas Supressoras de Tumor/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA