Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Syst Evol Microbiol ; 64(Pt 1): 220-227, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24048862

RESUMO

An aerobic, thermophilic, moderately acidophilic non-spore-forming bacterium, strain K22(T), was isolated from geothermally heated soil at Mount Ngauruhoe, New Zealand. On the basis of 16S rRNA gene sequence similarity, K22(T) was shown to belong to subdivision 4 of the phylum Acidobacteria and to be most closely related to 'Candidatus Chloracidobacterium thermophilum' (86 %) and Blastocatella fastidiosa (86 %). Cells stained Gram-negative and were catalase and oxidase-positive. The major fatty acids detected were iso-C15 : 0, iso-C17 : 0, iso-C19 : 0 and iso-C21 : 0 when standard lipid extraction protocols were employed. Analysis of the total cell lipid acid hydrolysate also detected membrane-spanning and ether lipids, which made up approximately 40 % of the total membrane composition. These lipids included dicarboxylic (iso-diabolic) acid and the glyceryl ether of alkyl analogues of iso-C15 : 0 and iso-diabolic acid. The G+C content of the genomic DNA was 59.6 mol% and the primary respiratory quinone was MK-8. Strain K22(T) grew at 50-69 °C with an optimum temperature of 65 °C and at pH 4.1-7.8 with an optimum growth pH of 6.5. NaCl tolerance was up to 1 % (w/v). Cells displayed a chemoheterotrophic and obligately aerobic metabolism. Cells grew on nutrient broth, alginate, arabinose, Casamino acids, glucose, lactate, formate, mannose, sodium alginate, peptone, sucrose, tryptone, xanthan, xylan, xylose and yeast extract. Nitrogen sources included nitrate, ammonium, urea, yeast extract and Casamino acids, but not dinitrogen gas. The distinct phylogenetic position and the phenotypic characteristics separate strain K22(T) from all other members of the class Acidobacteria and indicate that it represents a novel species and genus, for which the name Pyrinomonas methylaliphatogenes gen. nov., sp. nov. is proposed. The type strain of the type species is K22(T) ( = DSM 25857(T) = ICMP 18710(T)).


Assuntos
Acidobacteria/classificação , Temperatura Alta , Filogenia , Microbiologia do Solo , Acidobacteria/genética , Acidobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Dados de Sequência Molecular , Nova Zelândia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
2.
FEMS Microbiol Lett ; 186(2): 193-5, 2000 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-10802170

RESUMO

A suite of six sterols, lanosterol, lanost-8(9)-en-3beta-ol, 4, 4-dimethylcholesta-8(14),24-dien-3beta-ol, 4, 4-dimethylcholest-8(14)-en-3beta-ol, 4-methylcholesta-8(14), 24-dien-3beta-ol and 4-methylcholest-8(14)-en-3beta-ol, were identified in the psychrophilic methanotrophic bacterium, Methylosphaera hansonii. Their presence suggests that the capacity for sterol biosynthesis in methanotrophic bacteria is limited to the family Methylococcaceae but which have widely different optimal growth temperatures.


Assuntos
Methylococcaceae/química , Esteróis/análise , Regiões Antárticas , Cromatografia Gasosa , Methylococcaceae/crescimento & desenvolvimento , Esteróis/química
3.
FEMS Microbiol Lett ; 196(1): 67-70, 2001 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11257550

RESUMO

The stable carbon isotopic compositions of the inorganic carbon source, bulk cell material, and isoprenoid lipids of the hyperthermophilic crenarchaeon Metallosphaera sedula, which uses a 3-hydroxypropionate-like pathway for autotrophic carbon fixation, have been measured. Bulk cell material was approximately 3 per thousand enriched in 13C relative to the dissolved inorganic carbon, and 2 per thousand depleted in 13C relative to isoprenoid membrane lipids. The isotope data suggested that M. sedula uses mainly bicarbonate rather than CO(2) as inorganic carbon source, which is in accordance with a 3-hydroxypropionate-like carbon fixation pathway. To the best of our knowledge this is the first report of 13C fractionation effects of such a hyperthermophilic crenarchaeon.


Assuntos
Bicarbonatos/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análise , Ácido Láctico/análogos & derivados , Ácido Láctico/metabolismo , Sulfolobaceae/metabolismo , Meios de Cultura , Concentração de Íons de Hidrogênio , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Sulfolobaceae/química , Sulfolobaceae/crescimento & desenvolvimento , Temperatura
4.
Geobiology ; 9(5): 377-93, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21884361

RESUMO

Recent studies have shown that ancient plankton DNA can be recovered from Holocene lacustrine and marine sediments, including from species that do not leave diagnostic microscopic fossils in the sediment record. Therefore, the analysis of this so-called fossil plankton DNA is a promising approach for refining paleoecological and paleoenvironmental information. However, further studies are needed to reveal whether DNA of past plankton is preserved beyond the Holocene. Here, we identified past eukaryotic plankton members based on 18S rRNA gene profiling in eastern Mediterranean Holocene and Pleistocene sapropels S1 (~9 ka), S3 (~80 ka), S4 (~105 ka), and S5 (~125 ka). The majority of preserved ~400- to 500-bp-long 18S rDNA fragments of microalgae that were studied in detail (i.e. from haptophyte algae and dinoflagellates) were found in the youngest sapropel S1, whereas their specific lipid biomarkers (long-chain alkenones and dinosterol) were also abundant in sediments deposited between 80 and 124 ka BP. The late-Pleistocene sediments mainly contained eukaryotic DNA of marine fungi and from terrestrial plants, which could have been introduced via the river Nile at the time of deposition and preserved in pollen grains. A parallel analysis of Branched and Isoprenoid Tetraethers (i.e. BIT index) showed that most of the organic matter in the eastern Mediterranean sediment record was of marine (e.g. pelagic) origin. Therefore, the predominance of terrestrial plant DNA over plankton DNA in older sapropels suggests a preferential degradation of marine plankton DNA.


Assuntos
Dinoflagellida/genética , Sedimentos Geológicos/química , Haptófitas/genética , Paleontologia/métodos , Reação em Cadeia da Polimerase/métodos , Benzopiranos/análise , Biomarcadores/análise , Biomassa , Colestenos/análise , Eletroforese em Gel de Gradiente Desnaturante/métodos , Dinoflagellida/química , Dinoflagellida/classificação , Éteres/análise , Eucariotos/química , Eucariotos/classificação , Eucariotos/genética , Fósseis , Haptófitas/química , Haptófitas/classificação , Substâncias Húmicas/análise , Cetonas/análise , Mar Mediterrâneo , Filogenia , Fitoplâncton/química , Fitoplâncton/classificação , Fitoplâncton/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/isolamento & purificação
5.
Geobiology ; 7(3): 265-81, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19515203

RESUMO

Recent work has shown that paleoenvironmental genomics, i.e. the application of genomic tools to analyze preserved DNA in sedimentary records, is a promising approach to reconstruct the diversity of past planktonic communities. This provides information about past ecological and environmental changes. A major advantage of this approach is that individual species, including those that did not leave other characteristic markers, can be identified. In this study, we determined which dinoflagellate marker (i.e. 18S rDNA, dinosterol or dinocysts) provided the most detailed information about the late-Holocene succession of dinoflagellates in an Antarctic Fjord (Ellis Fjord, Vestfold Hills). The preserved rDNA revealed two intervals in the 2750-year-old sediment record. The dinoflagellate diversity was the highest until approximately 1850 cal yr bp and included phylotypes related to known dinosterol producers. A lower concentration of dinosterol in sediments <1850 cal yr bp coincided with a community shift towards a predominance of the autotrophic sea-ice dinoflagellate Polarella glacialis, which is not a source of dinosterol. Remarkably, cultures of P. glacialis are known to produce other diagnostic sterols, but these were not recovered here. In addition, conspicuous resting cysts of P. glacialis were not preserved in the analyzed sediments. Overall, dinocysts were rare and the paleoenvironmental genomics approach revealed the highest diversity of dinoflagellates in Ellis Fjord, and was the only approach that recorded a shift in dinoflagellate composition at approximately 1850 cal yr bp indicative of a colder climate with more extensive ice cover - this timing coincides with a period of changing climate reported for this region.


Assuntos
DNA de Protozoário/isolamento & purificação , Dinoflagellida/genética , Sedimentos Geológicos/parasitologia , Lipídeos/isolamento & purificação , Animais , Regiões Antárticas , Biodiversidade , Análise por Conglomerados , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genes de RNAr , Dados de Sequência Molecular , Filogenia , RNA de Protozoário/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
6.
Eur J Biochem ; 267(18): 5727-32, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10971583

RESUMO

Four previously unknown n-C25 and n-C27 heptaenes of the marine diatom Rhizosolenia setigera were isolated and identified using NMR spectroscopy. They possess six methylene interrupted (Z)-double bonds starting at C-3 and an additional terminal or n-2 (Z)-double bond. Structural and stable carbon isotopic evidence suggests that these polyenes are biosynthesized by chain elongation of the C22:6n-3 fatty acid, followed by decarboxylation and introduction of double bonds at specific positions.


Assuntos
Alcenos/química , Alcenos/metabolismo , Diatomáceas/química , Metano/análogos & derivados , Alcenos/isolamento & purificação , Carbono/química , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Heptanos/química , Hidrocarbonetos , Lipídeos/biossíntese , Lipídeos/química , Espectroscopia de Ressonância Magnética , Metano/química , Modelos Químicos , Temperatura , Fatores de Tempo
7.
J Biol Chem ; 276(14): 10971-6, 2001 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-11145961

RESUMO

To assess the effects related to known and proposed biosynthetic pathways on the (13)C content of lipids and storage products of the photoautotrophic bacterium Chloroflexus aurantiacus, the isotopic compositions of bulk cell material, alkyl and isoprenoid lipids, and storage products such as glycogen and polyhydroxyalkanoic acids have been investigated. The bulk cell material was 13 per thousand depleted in (13)C relative to the dissolved inorganic carbon. Evidently, inorganic carbon fixation by the main carboxylating enzymes used by C. aurantiacus, which are assumed to use bicarbonate rather than CO(2), results in a relatively small carbon isotopic fractionation compared with CO(2) fixation by the Calvin cycle. Even carbon numbered fatty acids, odd carbon numbered fatty acids, and isoprenoid lipids were 14, 15, and 17-18 per thousand depleted in (13)C relative to the carbon source, respectively. Based on the (13)C contents of alkyl and isoprenoid lipids, a 40 per thousand difference in (13)C content between the carboxyl and methyl carbon from acetyl-coenzyme A has been calculated. Both sugars and polyhydroxyalkanoic acid were enriched in (13)C relative to the alkyl and isoprenoid lipids. To the best of our knowledge this is the first report in which the stable carbon isotopic composition of a large range of biosynthetic products in a photoautotrophic organism has been investigated and interpreted based on previously proposed inorganic carbon fixation and biosynthetic pathways. Our results indicate that compound-specific stable carbon isotope analysis may provide a rapid screening tool for carbon fixation pathways.


Assuntos
Alcanos/metabolismo , Carbono/metabolismo , Chlorobi/metabolismo , Glicogênio/metabolismo , Metabolismo dos Lipídeos , Biodegradação Ambiental , Radioisótopos de Carbono
8.
J Biol Chem ; 276(24): 10971-6, 2001 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-11439929

RESUMO

To assess the effects related to known and proposed biosynthetic pathways on the (13)C content of lipids and storage products of the photoautotrophic bacterium Chloroflexus aurantiacus, the isotopic compositions of bulk cell material, alkyl and isoprenoid lipids, and storage products such as glycogen and polyhydroxyalkanoic acids have been investigated. The bulk cell material was 13 per thousand depleted in (13)C relative to the dissolved inorganic carbon. Evidently, inorganic carbon fixation by the main carboxylating enzymes used by C. aurantiacus, which are assumed to use bicarbonate rather than CO(2), results in a relatively small carbon isotopic fractionation compared with CO(2) fixation by the Calvin cycle. Even carbon numbered fatty acids, odd carbon numbered fatty acids, and isoprenoid lipids were 14, 15, and 17-18 per thousand depleted in (13)C relative to the carbon source, respectively. Based on the (13)C contents of alkyl and isoprenoid lipids, a 40 per thousand difference in (13)C content between the carboxyl and methyl carbon from acetyl-coenzyme A has been calculated. Both sugars and polyhydroxyalkanoic acid were enriched in (13)C relative to the alkyl and isoprenoid lipids. To the best of our knowledge this is the first report in which the stable carbon isotopic composition of a large range of biosynthetic products in a photoautotrophic organism has been investigated and interpreted based on previously proposed inorganic carbon fixation and biosynthetic pathways. Our results indicate that compound-specific stable carbon isotope analysis may provide a rapid screening tool for carbon fixation pathways.


Assuntos
Alcanos/metabolismo , Carbono/metabolismo , Chlorobi/metabolismo , Glicogênio/metabolismo , Metabolismo dos Lipídeos , Isótopos de Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA