Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Environ Sci Technol ; 58(27): 12051-12061, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38922431

RESUMO

Germicidal ultraviolet light (GUV) systems are designed to control airborne pathogen transmission in buildings. However, it is important to acknowledge that certain conditions and system configurations may lead GUV systems to produce air contaminants including oxidants and secondary organic aerosols (SOA). In this study, we modeled the formation and dispersion of oxidants and secondary contaminants generated by the operation of GUV systems employing ultraviolet C 254 and 222 nm. Using a three-dimensional computational fluid dynamics model, we examined the breathing zone concentrations of chemical species in an occupied classroom. Our findings indicate that operating GUV 222 leads to an approximate increase of 10 ppb in O3 concentration and 5.2 µg·m-3 in SOA concentration compared to a condition without GUV operation, while GUV 254 increases the SOA concentration by about 1.2 µg·m-3, with a minimal impact on the O3 concentration. Furthermore, increasing the UV fluence rate of GUV 222 from 1 to 5 µW·cm-2 results in up to 80% increase in the oxidants and SOA concentrations. For GUV 254, elevating the UV fluence rate from 30 to 50 µW·cm-2 or doubling the radiating volume results in up to 50% increase in the SOA concentration. Note that indoor airflow patterns, particularly buoyancy-driven airflow (or displacement ventilation), lead to 15-45% lower SOA concentrations in the breathing zone compared to well-mixed airflow. The results also reveal that when the ventilation rate is below 2 h-1, operating GUV 254 has a smaller impact on human exposure to secondary contaminants than GUV 222. However, GUV 254 may generate more contaminants than GUV 222 when operating at high indoor O3 levels (>15 ppb). These results suggest that the design of GUV systems should consider indoor O3 levels and room ventilation conditions.


Assuntos
Raios Ultravioleta , Poluição do Ar em Ambientes Fechados , Aerossóis , Poluentes Atmosféricos , Ozônio , Humanos
2.
Environ Sci Technol ; 56(12): 7820-7829, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35670501

RESUMO

Ozone-initiated oxidation reactions on indoor surfaces meaningfully alter the chemical composition of indoor air and human exposure to air toxins. Ozone mass transport within the indoor surface boundary layer plays a key role in ozone-surface reaction kinetics. However, limited information is available on detailed ozone transport dynamics near realistic, irregular indoor surfaces. This paper presents a research framework to study the underlying mechanisms of ozone reactions with realistic indoor surfaces based on microscope scanning of surface material and detailed Computational Fluid Dynamics (CFD) simulation. The study results show that indoor surface topography can meaningfully affect ozone mass transport within a surface boundary layer, thereby modulating near-surface ozone concentration gradient and surface uptake. The results also reveal that the effective indoor surface area available for ozone reaction varies with indoor air speed and turbulent air mixing within the boundary layer. The detailed dynamic behaviors of ozone reactions with realistic indoor surfaces provide insights into the implications of pollutant-surface interactions on indoor chemistry and air quality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Humanos , Cinética , Oxirredução , Ozônio/química
3.
Environ Sci Technol ; 55(14): 9730-9739, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34213881

RESUMO

Airborne nanoparticles are frequently released in occupied spaces due to episodic indoor source activities. Once generated, nanoparticles undergo aerosol transformation processes such as coagulation and deposition. These aerosol processes lead to changes in particle concentration and size distribution over time and accordingly affect human exposure to nanoparticles. The present study establishes a framework for an indoor particle dynamic model that can predict time- and size-dependent particle concentrations after episodic indoor emission events. The model was evaluated with six experimental data sets obtained from previous measurement studies in the literature. The indoor particle dynamic model quantified the relative contributions of three particle loss mechanisms (i.e., coagulation, deposition, and ventilation) to the total reduction in number concentration. The results show that particle coagulation and indoor surface deposition are two dominant processes responsible for temporal changes in particle size and concentration following indoor emission events. The first-order equivalent coagulation loss rate notably varies with indoor emission source and accounts for up to 59% of the total particle loss for burning a candle, 42% for broiling a fish, and 10% for burning incense. The results reveal that while the coagulation loss rate changes markedly with the particle concentration and source type, the deposition loss rate is more dependent on particle size. Compared to coagulation and deposition, the effect of ventilation is marginal for most of the nanoparticle emission events indoors; however, ventilation loss becomes pronounced with the decrease of particle concentration below 5 × 104 cm-3, especially for particles larger than 100 nm in aerodynamic diameter.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Nanopartículas , Aerossóis , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Humanos , Tamanho da Partícula , Ventilação
4.
Indoor Air ; 30(6): 1229-1240, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32478932

RESUMO

Ozone has adverse effects on human health. Skin oil on the human surface acts as an ozone sink indoors, producing oxidation products that can cause skin and respiratory irritations. Concentrations of ozone and oxidation products near human surfaces, including the breathing zone, can be modulated by indoor ventilation modes and human surface conditions. The objective of this study is to examine concentrations and spatial heterogeneity of ozone and ozonolysis products under representative ranges of indoor ventilation, clothing, and breathing conditions. Using computational fluid dynamics (CFD) simulation in conjunction with a chemical kinetic model, details of ozone reactions with the human surface and subsequent chemical reactions are examined. The results show that primary ozonolysis products are concentrated near the soiled clothing, while the secondary products are relatively well distributed throughout the room. Increasing indoor air mixing enhances the ozone deposition to the human surface, thereby resulting in higher emission rates of oxidation products in the room. Soiled clothing consumes more ozone than clean clothing and accordingly produces ~ 65% more primary products and ~15% more secondary products. The results also reveal that unsaturated hydrocarbons from the human breath, such as isoprene, contribute to only ~0.5% of ozone removal compared to ozone deposition to the human surface.


Assuntos
Poluição do Ar em Ambientes Fechados , Monitoramento Ambiental , Ozônio/uso terapêutico , Poluentes Atmosféricos , Humanos , Cinética , Espectrometria de Massas , Modelos Químicos , Oxirredução , Pele , Ventilação
5.
Environ Sci Technol ; 53(24): 14470-14478, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31693359

RESUMO

Indoor photolysis of nitrous acid (HONO) generates hydroxyl radicals (OH), and since OH is fast reacting, it may be confined within the HONO-photolyzing indoor volume of light. This study investigated the HONO-photolysis-induced formation of indoor OH, the transformation of OH to hydroperoxy radicals (HO2), and resulting spatial distributions of those radicals and their oxidation products. To do so, a computational fluid dynamics (CFD) model framework was established to simulate HONO photolysis in a room and subsequent reactions associated with OH and HO2 under a typical range of indoor lighting and ventilation conditions. The results showed that OH and HO2 were essentially confined in the volume of HONO-photolyzing light, but oxidation products were relatively well distributed throughout the room. As the light volume increased, more total in-room OH was produced, thereby increasing oxidation product concentrations. Spatial distributions of OH and HO2 varied by the type of artificial light (e.g., fluorescent versus incandescent), due to differences in photon flux as a function of light source and the distance from the source. The HO2 generation rate and air change rate made notable impacts on product concentrations.


Assuntos
Poluição do Ar em Ambientes Fechados , Hidrodinâmica , Radical Hidroxila , Ácido Nitroso , Fotólise
6.
Indoor Air ; 29(6): 1018-1027, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31378981

RESUMO

A major source of human exposure to ultrafine particles is candle use. Candles produce ultrafine particles in the size range under 10 nm, with perhaps half of the particles less than 5 nm. For these small particles at typically high concentrations, coagulation and deposition are two dominant mechanisms in aerosol size dynamics. We present an updated coagulation model capable of characterizing the relative contributions of coagulation, deposition, and air exchange rates. Size-resolved coagulation and decay rates are estimated for three types of candles. Number, area, and mass distributions are provided for 93 particle sizes from 2.33 to 64 nm. Total particle production was in the range of 1013  min-1 . Peak number, area, and mass concentrations occurred at particle sizes of <3, 20, and 40 nm, respectively. Both the number and area concentrations greatly exceeded background concentrations in the residence studied. Contributions of coagulation, deposition, and air exchange rates to particle losses were 65%, 34%, and 0.3% at high concentrations (106  cm-3 ), while they are 17%, 81%, and 1.7% at lower concentrations (3 × 104  cm-3 ), respectively. The increased particle production for the very smallest particles (2.33-2.50 nm) suggests that even smaller particles may be important to study.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Incêndios , Material Particulado/análise , Habitação , Humanos , Exposição por Inalação/análise , Tamanho da Partícula
7.
Environ Sci Technol ; 50(18): 10031-8, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27181617

RESUMO

Indoor ultrafine particles (UFP, <100 nm) released from combustion and consumer products lead to elevated human exposure to UFP. UFP emitted from the sources undergo aerosol transformation processes such as coagulation and deposition. The coagulation effect can be significant during the source emission due to high concentration and high mobility of nanosize particles. However, few studies have estimated size-resolved UFP source emission strengths while considering coagulation in their theoretical and experimental research work. The primary objective of this study is to characterize UFP source strength by considering coagulation in addition to other indoor processes (i.e., deposition and ventilation) in a realistic setting. A secondary objective is to test a hypothesis that size-resolved UFP source emission rates are unimodal and log-normally distributed for three common indoor UFP sources: an electric stove, a natural gas burner, and a paraffin wax candle. Experimental investigations were performed in a full-scale test building. Size- and time-resolved concentrations of UFP ranging from 2 to 100 nm were monitored using a scanning mobility particle sizer (SMPS). Based on the temporal evolution of the particle size distribution during the source emission period, the size-dependent source emission rate was determined using a material-balance modeling approach. The results indicate that, for a given UFP source, the source strength varies with particle size and source type. The analytical model assuming a log-normally distributed source emission rate could predict the temporal evolution of the particle size distribution with reasonable accuracy for the gas stove and the candle. Including the effect of coagulation was found to increase the estimates of source strengths by up to a factor of 8. This result implies that previous studies on indoor UFP source strengths considering only deposition and ventilation might have largely underestimated the true values of UFP source strengths, especially for combustion due to the natural gas stove and the candle.


Assuntos
Poluição do Ar em Ambientes Fechados , Material Particulado , Aerossóis , Poluentes Atmosféricos , Monitoramento Ambiental , Humanos , Tamanho da Partícula , Ventilação
8.
Environ Sci Technol ; 48(3): 2067-74, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24387032

RESUMO

Human exposure to airborne ultrafine particles (UFP, < 100 nm) has been shown to have adverse health effects and can be elevated in buildings. In-duct electrostatic precipitator filters (ESP) have been shown to be an effective particulate control device for reducing UFP concentrations (20-100 nm) in buildings, although they have the potential to increase indoor ozone concentrations. This study investigated residential ESP filters to reduce ultrafine particles between 4 to 15 nm and quantified the resulting ozone generation. In-duct ESPs were operated in the central air handling unit of a test house. Results for the two tested ESP brands indicate that removal efficiency of 8 to 14 nm particles was near zero and always less than 10% (± 15%), possibly due to particle generation or low charging efficiency. Adding a media filter downstream of the ESP increased the decay rate for particles in the same size range. Continuous operation of one brand of ESP raised indoor ozone concentrations to 77 ppbv and 20 ppbv for a second brand. Using commercial filters containing activated carbon downstream of the installed ESP reduced the indoor steady-state ozone concentrations between 6% and 39%.


Assuntos
Filtração/instrumentação , Ozônio/química , Tamanho da Partícula , Material Particulado/isolamento & purificação , Eletricidade Estática , Carbono/química , Humanos
9.
Artigo em Inglês | MEDLINE | ID: mdl-38973672

RESUMO

The utilization of portable air cleaners (PACs) is a recommended supplemental approach to help remove airborne pathogens and mitigate disease transmission in learning environments. To improve PAC effectiveness, science-based information is needed to optimize their implementation strategies such as the deployment location, height, and number of PACs. In this study, we developed a Computational Fluid Dynamics (CFD) model to assess how PACs perform in occupied classrooms equipped with displacement and mixing ventilation systems. The results show that PACs with a flow rate of 2.6 h-1 reduce the mean aerosol intake of all students by up to 66%. A key benefit of using PACs is to facilitate air mixing and movement in indoor environments with inadequate ventilation, thereby effectively reducing high aerosol concentrations near the infector. Furthermore, our results highlight the impact of PAC location on its performance. PACs achieve the best effectiveness when placed closed to the infector (within a distance <3 m). In the absence of knowing who is infected, deploying a PAC at the center of the room is recommended. Moreover, adjusting PAC flow discharge height to the breathing height of occupants (e.g., 0.9-1.2 m for seated people) can enhance their effectiveness in spaces with poor air mixing.

10.
Environ Sci Technol ; 47(4): 1922-9, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23384189

RESUMO

Inhalation exposure to ambient ultrafine particles (UFP) has been shown to induce adverse health effects such as respiratory and cardiovascular mortality. Human exposure to particles of outdoor origin often occurs indoors due to entry of UFP into buildings. The objective of the present study is to investigate entry of UFP into a building considering building operational characteristics and their size-dependent effects on UFP concentrations. Indoor and outdoor UFP concentrations along with air change rates were continuously measured in a full-scale test building. Estimates of infiltration factor, penetration coefficient, and deposition rate have been made for a range of particle sizes from 4 to 100 nm. The results show that UFP infiltration factor varies with particle diameter, window position, air change rate, and central fan operation. When the central fan was on continuously, the average infiltration factor ranged from 0.26 (particles <10 nm) to 0.82 (particles >90 nm) for two large window openings, and from 0.07 to 0.60 for two small window openings. Under the central fan-off condition, the average infiltration factor ranged from 0.25 (particles <10 nm) to 0.72 (particles >90 nm) for two small window openings, while it ranged from 0.01 to 0.48 with all windows closed. Larger window openings led to higher infiltration factors due to the larger extent of particle penetration into the building. The fan operation mode (on vs off) also has a strong impact, as the infiltration factor was consistently lower (up to 40%) when the fan was on due to additional particle deposition loss to the furnace filter and duct surfaces.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Material Particulado/análise , Ventilação , Modelos Estatísticos
11.
Environ Pollut ; 338: 122680, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37821040

RESUMO

Indoor airborne ultrafine particles (UFPs) are mainly originated from occupant activities, such as candle burning and cooking. Elevated exposure to UFPs has been found to increase oxidative stress and cause DNA damage. UFPs originating from indoor sources undergo dynamic aerosol transformation mechanisms. This study investigates the dynamics of UFPs following episodic indoor releases of the six distinct emission sources: 1) candle, 2) gas stove, 3) clothes dryer, 4) tea & toast, 5) broiled fish, and 6) incense. Based on the analytical model of aerosol dynamic processes, this study reports size-resolved source emission rates along with relative contributions of coagulation, deposition, and ventilation to the particle size distribution dynamics. The study findings indicate a significant variation in the geometric mean diameter (GMD) and size-resolved number concentration over time for the sources that emit a substantial amount of UFPs smaller than 10 nm. As the emission progresses, the UFP number concentrations increase in a log-normal distribution, while the GMD shows a tendency to increase over time. The observed result suggests that coagulation can have a considerable impact on UFP number concentration and size, even during the indoor UFP emission. The estimated emission rates of the six indoor sources appear to follow a log-normal distribution while the emission rate ranges from 107 min-1 to 1012 min-1. The indoor UFP concentration and size distribution dynamics are substantially affected by the interplay of the three aerosol loss mechanisms that compete with each other, and this impact varies according to the source type and the indoor environmental conditions. Ultimately, using the aerosol transformation mechanisms examined in this study, researchers can refine exposure assessment for epidemiological studies on indoor ultrafine particles.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Material Particulado/análise , Poluentes Atmosféricos/análise , Tamanho da Partícula , Monitoramento Ambiental , Poluição do Ar em Ambientes Fechados/análise , Aerossóis
12.
Sci Total Environ ; 899: 165454, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37467991

RESUMO

Upper-room ultraviolet germicidal irradiation (UVGI) system is recently in the limelight as a potentially effective method to mitigate the risk of airborne virus infection in indoor environments. However, few studies quantitatively evaluated the relationship between ventilation effectiveness and virus disinfection performance of a UVGI system. The objective of this study is to investigate the effects of ventilation strategy on detailed airflow distributions and UVGI disinfection performance in an occupied classroom. Three-dimensional computational fluid dynamics (CFD) simulations were performed for representative cooling, heating, and ventilation scenarios. The results show that when the ventilation rate is 1.1 h-1 (the minimum ventilation rate based on ASHRAE 62.1), enhancing indoor air circulation with the mixing fan notably improves the UVGI disinfection performance, especially for cooling with displacement ventilation and all-air-heating conditions. However, increasing indoor air mixing yields negligible effect on the disinfection performance for forced-convection cooling condition. The results also reveal that regardless of indoor thermal condition, disinfection effectiveness of a UVGI system increases as ventilation effectiveness is close to unity. Moreover, when the room average air speed is >0.1 m/s, upper-room UVGI system could yield about 90% disinfection effect for the aerosol size of 1 µm-10 µm. The findings of this study imply that upper-room UVGI systems in indoor environments (i.e., classrooms, hospitals) should be designed considering ventilation strategy and occupancy conditions, especially for occupied buildings with insufficient air mixing throughout the space.


Assuntos
Microbiologia do Ar , Poluição do Ar em Ambientes Fechados , Ventilação/métodos , Raios Ultravioleta , Desinfecção/métodos , Respiração , Poluição do Ar em Ambientes Fechados/prevenção & controle , Poluição do Ar em Ambientes Fechados/análise
13.
Environ Pollut ; 333: 121996, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37336347

RESUMO

Buildings are often located near ambient air pollution sources such as wildfire or heavy traffic areas. While windows in buildings are intermittently open for free cooling or natural ventilation, increased leakage area can lead to elevated human exposure to air pollutants of outdoor origin. The objective of this study is to investigate the effectiveness of paper filter windows in reducing exposure to outdoor air pollution and improving indoor air quality. The physical properties of paper windows as filtration media were experimentally determined, based on which multi-zone indoor air quality and ventilation analysis (CONTAM) simulations were performed for a full-scale building. The results show that the outdoor-indoor air exchange rate of a building can increase about 100% when conventional windows are replaced with paper filter windows. Even with the increased air exchange rate, the infiltration of outdoor particles into the building was reduced about 57-77% for the particle size range of 7-300 nm. These findings imply that paper windows have potential benefits for controlling both outdoor originated pollutants and indoor-generated pollutants with minimal energy inputs, especially in cities and communities impacted by urban air pollution and wildfires.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Humanos , Monitoramento Ambiental , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Tamanho da Partícula , Material Particulado/análise
14.
Science ; 377(6610): 1071-1077, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36048928

RESUMO

Hydroxyl (OH) radicals are highly reactive species that can oxidize most pollutant gases. In this study, high concentrations of OH radicals were found when people were exposed to ozone in a climate-controlled chamber. OH concentrations calculated by two methods using measurements of total OH reactivity, speciated alkenes, and oxidation products were consistent with those obtained from a chemically explicit model. Key to establishing this human-induced oxidation field is 6-methyl-5-hepten-2-one (6-MHO), which forms when ozone reacts with the skin-oil squalene and subsequently generates OH efficiently through gas-phase reaction with ozone. A dynamic model was used to show the spatial extent of the human-generated OH oxidation field and its dependency on ozone influx through ventilation. This finding has implications for the oxidation, lifetime, and perception of chemicals indoors and, ultimately, human health.


Assuntos
Poluentes Atmosféricos , Exposição Ambiental , Radical Hidroxila , Ozônio , Ar Condicionado , Poluentes Atmosféricos/efeitos adversos , Alcenos , Humanos , Radical Hidroxila/análise , Radical Hidroxila/metabolismo , Oxirredução , Ozônio/efeitos adversos , Ventilação
15.
Environ Sci Process Impacts ; 23(11): 1706-1717, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34643206

RESUMO

We spend most of our time in built environments. The cumulative exposure to particulate matter (PM) occurring in these built environments can potentially be comparable to or even exceed that occurring outdoors. Therefore, it is critical to understand the sources, dynamics, and fate of PM in built environments. This work focuses on aerosol dynamics modeling (including coagulation, deposition, and exfiltration) of sub-500 nm particles measured inside a test house during the HOMEChem campaign while performing prescribed cooking activities. Deposition characteristics of the test house, emission rates and factors, and the fate of particles are presented. Number emission rates calculated for two different heat sources (stove and hot plate) and the various meals cooked on them were highest for sub-10 nm particles. Coagulation and deposition contributed comparably to the particle number concentration decay. Most of the PM (90% number-based and 70% mass-based) deposited within the house while the remaining fraction left the test house volume via exfiltration. Simulation results show that while increased air exchange rate reduces indoor PM mass concentration, it can lead to increased number concentration. An increase from 0.5 to 5 ACH (comparable to the equivalent air change rate from running a well-dimensioned portable air cleaner) would result in a 70% reduction in PM mass-based exposure while a further increase from 5 to 20 ACH would only result in an additional 21% reduction.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Aerossóis , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Tamanho da Partícula , Material Particulado/análise
16.
Commun Chem ; 4(1): 110, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36697551

RESUMO

Historically air constituents have been assumed to be well mixed in indoor environments, with single point measurements and box modeling representing a room or a house. Here we demonstrate that this fundamental assumption needs to be revisited through advanced model simulations and extensive measurements of bleach cleaning. We show that inorganic chlorinated products, such as hypochlorous acid and chloramines generated via multiphase reactions, exhibit spatial and vertical concentration gradients in a room, with short-lived ⋅OH radicals confined to sunlit zones, close to windows. Spatial and temporal scales of indoor constituents are modulated by rates of chemical reactions, surface interactions and building ventilation, providing critical insights for better assessments of human exposure to hazardous pollutants, as well as the transport of indoor chemicals outdoors.

17.
Environ Sci Technol ; 44(15): 5908-13, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20666560

RESUMO

Ultrafine particles (UFP) (<100 nm) have been related to adverse human health effects such as oxidative stress and cardiovascular mortality. However, human exposure to particles of outdoor origin is heavily dependent on their infiltration into homes. The infiltration factor (Finf) and its variation as a function of several factors becomes of enormous importance in epidemiological studies. The objective of this study is to investigate the transport of UFP into a residential building and to determine the functional dependence of infiltration on particle size and air change rate. A secondary objective was to estimate the values of the penetration coefficient P and composite deposition rate kcomp that enter into the definition of Finf. Using continuous measurements of indoor and outdoor concentrations of size-resolved particles ranging from 5 to 100 nm in a manufactured test house, particle penetration through the building, composite deposition, and the resulting value of Finf were calculated for two cases: closed windows and one window open 7.5 cm. Finf ranged from close to 0 (particles<10 nm) to 0.3 (particles>80 nm) with windows closed and from 0 to 0.6 with one window open. The penetration coefficient (closed windows) increased from about 0.2 for 10-nm particles to an asymptote near 0.6 for particles from 30-100 nm. Open window penetration coefficients were higher, ranging from 0.6 to 0.8. Closed-window composite deposition rates, which included losses to the furnace filter and to the ductwork as well as to interior surfaces, monotonically decreased from levels of about 1.5 h(-1) for 10-nm particles to 0.3 h(-1) for 100-nm particles. For the open-window case, composite deposition rates were higher for particles<20 nm, reaching values of 3.5 h(-1). Mean standard errors associated with estimates of P, kcomp, and Finf for two series of measurements ranged from 1.0% to 4.4%.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Habitação , Material Particulado/análise , Exposição Ambiental/análise , Modelos Químicos , Tamanho da Partícula
18.
J Occup Environ Hyg ; 7(12): 683-92, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20981607

RESUMO

The presence of airborne pollutants in indoor environments has been associated with occupants' discomfort and/or adverse health effects. This study investigates occupational exposure in relation to indoor air mixing and source location relative to a human body. Experimental and computational methods were used to provide information about the pollutant distribution in the vicinity of the human body for different levels of room air mixing. Study results show that the often used assumption of uniform pollutant distribution in an occupied space is not always appropriate for estimation of inhalation exposure. Results also indicate that an occupant may experience very high acute exposure to airborne pollutants when little air mixing exists in a space and the pollutant source is in the vicinity of the occupant. The buoyancy-driven flow induced by the convective heat transfer from an occupant's body can transport pollutants in the occupant's vicinity to the breathing zone. Specific study results reveal that a source located in the occupant's front chest region makes a relatively large contribution to the breathing zone concentration compared with the other sources in the vicinity of the human body. With the source position in this region, exposure can be nine times greater than that calculated with the uniform mixing assumption. The buoyancy-driven convective plume around a body seems to have a significant influence on pollutant transport and human exposure, especially in the absence of room air mixing.


Assuntos
Movimentos do Ar , Poluição do Ar em Ambientes Fechados/análise , Simulação por Computador , Exposição por Inalação/análise , Análise Numérica Assistida por Computador , Exposição Ocupacional/análise , Ventilação/métodos , Ambiente Controlado , Gases/análise , Humanos , Hidrodinâmica , Manequins , Reprodutibilidade dos Testes , Temperatura
19.
Environ Sci Process Impacts ; 22(8): 1698-1709, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32661531

RESUMO

Indoor surfaces are extremely diverse and their interactions with airborne compounds and aerosols influence the lifetime and reactivity of indoor emissions. Direct measurements of the physical and chemical state of these surfaces provide insights into the underlying physical and chemical processes involving surface adsorption, surface partitioning and particle deposition. Window glass, a ubiquitous indoor surface, was placed vertically during indoor activities throughout the House Observations of Microbial and Environmental Chemistry (HOMEChem) campaign and then analyzed to measure changes in surface morphology and surface composition. Atomic force microscopy-infrared (AFM-IR) spectroscopic analyses reveal that deposition of submicron particles from cooking events is a contributor to modifying the chemical and physical state of glass surfaces. These results demonstrate that the deposition of glass surfaces can be an important sink for organic rich particles material indoors. These findings also show that particle deposition contributes enough organic matter from a single day of exposure equivalent to a uniform film up to two nanometers in thickness, and that the chemical distinctness of different indoor activities is reflective of the chemical and morphological changes seen in these indoor surfaces. Comparison of the experimental results to physical deposition models shows variable agreement, suggesting that processes not captured in physical deposition models may play a role in the sticking of particles on indoor surfaces.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Culinária , Adsorção , Aerossóis , Tamanho da Partícula
20.
Environ Sci Process Impacts ; 21(8): 1240-1254, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31070639

RESUMO

We report on the development of a modelling consortium for chemistry in indoor environments that connects models over a range of spatial and temporal scales, from molecular to room scales and from sub-nanosecond to days, respectively. Our modeling approaches include molecular dynamics (MD) simulations, kinetic process modeling, gas-phase chemistry modeling, organic aerosol modeling, and computational fluid dynamics (CFD) simulations. These models are applied to investigate ozone reactions with skin and clothing, oxidation of volatile organic compounds and formation of secondary organic aerosols, and mass transport and partitioning of indoor species to surfaces. MD simulations provide molecular pictures of limonene adsorption on SiO2 and ozone interactions with the skin lipid squalene, providing kinetic parameters such as surface accommodation coefficient, desorption lifetime, and bulk diffusivity. These parameters then constrain kinetic process models, which resolve mass transport and chemical reactions in gas and condensed phases for analysis of experimental data. A detailed indoor chemical box model is applied to simulate α-pinene ozonolysis with improved representation of gas-particle partitioning. Application of 2D-volatility basis set reveals that OH-induced aging sometimes drives increases in indoor organic aerosol concentrations, due to organic mass functionalization and enhanced partitioning. CFD simulations show that concentrations of ozone and primary product change near the human surface rapidly, indicating non-uniform spatial distributions from the occupant surface to ambient air, while secondary ozone product is relatively well-mixed throughout the room. This development establishes a framework to integrate different modeling tools and experimental measurements, opening up an avenue for development of comprehensive and integrated models with representations of various chemistry in indoor environments.


Assuntos
Poluentes Atmosféricos/química , Poluição do Ar em Ambientes Fechados/análise , Modelos Teóricos , Ozônio/química , Compostos Orgânicos Voláteis/química , Aerossóis , Poluentes Atmosféricos/análise , Humanos , Cinética , Oxirredução , Ozônio/análise , Pele/química , Análise Espaço-Temporal , Propriedades de Superfície , Têxteis/análise , Compostos Orgânicos Voláteis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA