Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phytopathology ; 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39434003

RESUMO

Rapid, field-deployable assays such as loop-mediated isothermal amplification (LAMP) are critical for detecting nursery and forest pathogens like Phytophthora ramorum and P. kernoviae to prevent pathogen spread. We developed and validated four LAMP assays for genus-level detection of Phytophthora spp., species-level detection of P. kernoviae and P. ramorum and lineage-level detection of the P. ramorum NA1 lineage. Cross reactivity of the two species-specific LAMP assays was evaluated using a set of 18 Phytophthora spp. known to infect nursery crop hosts. The correct target species were detected by the species-level LAMP assays. The Phytophthora spp. LAMP assay was evaluated against 27 Phytophthora spp. and other bacterial and fungal pathogens and reacted with all the Phytophthora spp. evaluated but no other bacterial or fungal species. The limit of detection (LOD) of the P. kernoviae LAMP was 100 fg/µl and the LOD of the P. ramorum LAMP assay was 1 pg/µl of DNA. The NA1 LAMP assay was tested against the NA1, NA2, EU1, and EU2 lineages of P. ramorum and was lineage-specific but had a higher LOD (100pg/µl) than the species-specific LAMP assays. Both P. ramorum and P. kernoviae LAMP assays were highly precise (>0.94) in detecting the respective pathogens in symptomatic rhododendron leaves and co-inoculation experiments. The set of four LAMP assays were run in tandem on a microfluidic chip and smartphone platform and can be used in the field to detect and monitor spread of these regulatory Phytophthora spp. in forest and/or nursery settings.

2.
Phytopathology ; 114(8): 1975-1983, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38829831

RESUMO

Rapid detection of plant diseases before they escalate can improve disease control. Our team has developed rapid nucleic acid extraction methods with microneedles and combined these with loop-mediated amplification (LAMP) assays for pathogen detection in the field. In this work, we developed LAMP assays for early blight (Alternaria linariae, A. alternata, and A. solani) and bacterial spot of tomato (Xanthomonas perforans) and validated these LAMP assays and two previously developed LAMP assays for tomato spotted wilt virus and late blight. Tomato plants were inoculated, and disease severity was measured. Extractions were performed using microneedles, and LAMP assays were run in tubes (with hydroxynaphthol blue) on a heat block or on a newly designed microfluidic slide chip on a heat block or a slide heater. Fluorescence on the microfluidic chip slides was visualized using EvaGreen and photographed on a smartphone. Plants inoculated with X. perforans or tomato spotted wilt virus tested positive prior to visible disease symptoms, whereas Phytophthora infestans and A. linariae were detected at the time of visual disease symptoms. LAMP assays were more sensitive than PCR, and the limit of detection was 1 pg of DNA for both A. linariae and X. perforans. The LAMP assay designed for early blight detected all three species of Alternaria that infect tomato and is thus an Alternaria spp. assay. This study demonstrates the utility of rapid microneedle extraction followed by LAMP on a microfluidic chip for rapid diagnosis of four important tomato pathogens.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Doenças das Plantas , Smartphone , Solanum lycopersicum , Solanum lycopersicum/virologia , Solanum lycopersicum/microbiologia , Doenças das Plantas/virologia , Doenças das Plantas/microbiologia , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Técnicas de Amplificação de Ácido Nucleico/métodos , Agulhas/virologia , Agulhas/microbiologia , Oomicetos/isolamento & purificação , Dispositivos Lab-On-A-Chip , Fungos/isolamento & purificação , Técnicas de Diagnóstico Molecular
3.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34021073

RESUMO

Plant disease outbreaks are increasing and threaten food security for the vulnerable in many areas of the world. Now a global human pandemic is threatening the health of millions on our planet. A stable, nutritious food supply will be needed to lift people out of poverty and improve health outcomes. Plant diseases, both endemic and recently emerging, are spreading and exacerbated by climate change, transmission with global food trade networks, pathogen spillover, and evolution of new pathogen lineages. In order to tackle these grand challenges, a new set of tools that include disease surveillance and improved detection technologies including pathogen sensors and predictive modeling and data analytics are needed to prevent future outbreaks. Herein, we describe an integrated research agenda that could help mitigate future plant disease pandemics.


Assuntos
Mudança Climática , Ecossistema , Segurança Alimentar , Doenças das Plantas , Humanos
4.
Plant Dis ; : PDIS04230807RE, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085974

RESUMO

Phytophthora blight, caused by Phytophthora capsici, is one of the most economically significant diseases of bell pepper in the United States. Over the past several decades, isolates of P. capsici exhibiting resistance to mefenoxam and other fungicides have been reported. Fungicide resistance coupled with an increased market for organically grown crops has led to interest in biological control as a disease management option. In this work, an isolate of Bacillus subtilis (AFS032321) was evaluated for control of Phytophthora blight of bell pepper in the greenhouse and field. A 28% active ingredient wettable powder formulation of the strain was applied as a soil drench at transplanting prior to inoculation. Treatment with this formulation of B. subtilis significantly reduced the area under the disease progress curve (AUDPC) by up to 52% compared to untreated control plants in greenhouse tests. Comparisons between applying the biocontrol weekly after seeding for 5 weeks versus a single application at transplanting (5 weeks) indicated no significant benefits of additional applications. The formulation of B. subtilis reduced disease caused by a mefenoxam-resistant isolate of P. capsici, while mefenoxam failed. The biocontrol efficacy of formulated strains was not affected in different soil types or potting media. However, disease was more severe in sandy soils. In field experiments that were conducted with a mefenoxam-sensitive isolate, disease incidence and severity of Phytophthora blight were significantly reduced at all rates of B. subtilis in 2019 except the 16.8 kg ha-1 rate. In both years, mefenoxam was more effective than B. subtilis in controlling disease in the field. B. subtilis did not affect the spatial dynamics of pathogen spread within rows. While the precise mechanism(s) of action is unclear, in vitro dual-culture tests suggest direct antagonism, as B. subtilis significantly inhibited colony growth of P. capsici. AgBiome has recently released a new formulation of the AFS032321 strain named Theia, with higher active ingredients for commercial applications and biocontrol of P. capsici.

5.
Phytopathology ; 113(8): 1506-1514, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36989124

RESUMO

Samples from potato fields with lesions with late blight-like symptoms were collected from eastern North Carolina in 2017 and the causal agent was identified as Phytophthora nicotianae. We have identified P. nicotianae in potato and tomato samples from North Carolina, Virginia, Maryland, Pennsylvania, and New York. Ninety-two field samples were collected from 46 fields and characterized for mefenoxam sensitivity, mating type, and simple sequence repeat genotype using microsatellites. Thirty-two percent of the isolates were the A1 mating type, while 53% were the A2 mating type. In six cases, both A1 and A2 mating types were detected in the same field in the same year. All isolates tested were sensitive to mefenoxam. Two genetic groups were discerned based on STRUCTURE analysis: one included samples from North Carolina and Maryland, and one included samples from all five states. The data suggest two different sources of inoculum from the field sites sampled. Multiple haplotypes within a field and the detection of both mating types in close proximity suggests that P. nicotianae may be reproducing sexually in North Carolina. There was a decrease in the average number of days with weather suitable for late blight, from 2012 to 2016 and 2017 to 2021 in all of the North Carolina counties where P. nicotianae was reported. P. nicotianae is more thermotolerant than P. infestans and grows at higher temperatures (25 to 35°C) than P. infestans (18 to 22°C). Late blight outbreaks have decreased in recent years and first reports of disease are later, suggesting that the thermotolerant P. nicotianae may cause more disease as temperatures rise due to climate change.

6.
Phytopathology ; 112(2): 422-434, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34058860

RESUMO

Peronospora tabacina is an obligate parasite that causes blue mold of tobacco. The pathogen reproduces primarily by sporangia, whereas the sexual oospores are rarely observed. A collection of 122 isolates of P. tabacina was genotyped using nine microsatellites to assess the population structure of individuals from subpopulations collected from central, southern, and western Europe; the Middle East; Central America; North America; and Australia. Genetic variations among the six subpopulations accounted for ∼8% of the total variation, including moderate levels of genetic differentiation, high gene flow among these subpopulations, and a positive correlation between geographic and genetic distance (r = 0.225; P < 0.001). Evidence of linkage disequilibrium (P < 0.001) showed that populations contained partially clonal subpopulations but that subpopulations from Australia and Mediterranean Europe did not. High genetic variation and population structure among samples could be explained by continuous gene flow across continents via infected transplant exchange and/or long-distance dispersal of sporangia via wind currents. This study analyzed the most numerous P. tabacina collection and allowed conclusions regarding the migration, mutation, and evolutionary history of this obligate biotrophic oomycete. The evidence pointed to the species origin in Australia and identified intracontinental and intercontinental migration patterns of this important pathogen.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Peronospora , Fluxo Gênico , Variação Genética , Repetições de Microssatélites/genética , Peronospora/genética , Doenças das Plantas/parasitologia , Nicotiana/genética
7.
Plant Dis ; 104(3): 708-716, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31967506

RESUMO

Phytophthora infestans is the causal agent of potato late blight, a devastating disease of tomato and potato and a threat to global food security. Early detection and intervention is essential for effective management of the pathogen. We developed a loop-mediated isothermal amplification (LAMP) assay for P. infestans and compared this assay to conventional PCR, real-time LAMP, and droplet digital PCR for detection of P. infestans. The LAMP assay was specific for P. infestans on potato and tomato and did not amplify other potato- or tomato-infecting Phytophthora species or other fungal and bacterial pathogens that infect potato and tomato. The detection threshold for SYBR Green LAMP and real-time LAMP read with hydroxynaphthol blue and EvaGreen was 1 pg/µl. In contrast, detection by conventional PCR was 10 pg/µl. Droplet digital PCR had the lowest detection threshold (100 fg/µl). We adapted the LAMP assay using SYBR Green and a mobile reader (mReader) for use in the field. Detection limits were 584 fg/µl for SYBR Green LAMP read on the mReader, which was more sensitive than visualization with the human eye. The mobile platform records geospatial coordinates and data from positive pathogen detections can be directly uploaded to a cloud database. Data can then be integrated into disease surveillance networks. This system will be useful for real-time detection of P. infestans and will improve the timeliness of reports into surveillance systems such as USABlight or EuroBlight.


Assuntos
Phytophthora infestans , Solanum lycopersicum , Solanum tuberosum , Técnicas de Amplificação de Ácido Nucleico , Reação em Cadeia da Polimerase
8.
Phytopathology ; 109(9): 1614-1627, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31066347

RESUMO

The oomycete Phytophthora infestans is an important plant pathogen on potato and tomato crops. We examined the genetic structure of extant 20th and 21st century U.S. lineages of P. infestans and compared them with populations from South America and Mexico to examine genetic relationships and potential sources of lineages. US-23, currently the most prevalent lineage detected in the United States, shared genetic similarity primarily with the BR-1 lineage identified in the 1990s from Bolivia and Brazil. Lineages US-8, US-14, and US-24, predominantly virulent on potato, formed a cluster distinct from other U.S. lineages. Many of the other U.S. lineages shared significant genetic similarity with Mexican populations. The US-1 lineage, dominant in the mid-20th century, clustered with US-1 lineages from Peru. A survey of the presence of RXLR effector PiAVR2 revealed that some lineages carried PiAVR2, its resistance-breaking variant PiAVR2-like, or both. Minimum spanning networks developed from simple sequence repeat genotype datasets from USABlight outbreaks clearly showed the expansion of US-23 over a 6-year time period and geographic substructuring of some lineages in the western United States. Many clonal lineages of P. infestans in the United States have come from introductions from Mexico, but the US-23 and US-1 lineages were most likely introduced from other sources.


Assuntos
Phytophthora infestans , Solanum tuberosum , Brasil , Estruturas Genéticas , México , Phytophthora infestans/fisiologia , Doenças das Plantas/estatística & dados numéricos , Estados Unidos
9.
Mol Ecol ; 27(3): 737-751, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29218863

RESUMO

Tobacco blue mold, caused by Peronospora tabacina, is an oomycete plant pathogen that causes yearly epidemics in tobacco (Nicotiana tabacum) in the United States and Europe. The genetic structure of P. tabacina was examined to understand genetic diversity, population structure and patterns of migration. Two nuclear loci, Igs2 and Ypt1, and one mitochondrial locus, cox2, were amplified, cloned and sequenced from fifty-four isolates of P. tabacina from the United States, Central America-Caribbean-Mexico (CCAM), Europe and the Middle East (EULE). Cloned sequences from the three genes showed high genetic variability across all populations. Nucleotide diversity and the population mean mutation parameter per site (Watterson's theta) were higher in EULE and CCAM and lower in U.S. POPULATIONS: Neutrality tests were significant and the equilibrium model of neutral evolution was rejected, indicating an excess of recent mutations or rare alleles. Hudson's Snn tests were performed to examine population subdivision and gene flow among populations. An isolation-with-migration analysis (IM) supported the hypothesis of long-distance migration of P. tabacina from the Caribbean region, Florida and Texas into other states in the United States. Within the European populations, the model documented migration from North Central Europe into western Europe and Lebanon, and migration from western Europe into Lebanon. The migration patterns observed support historical observations about the first disease introductions and movement in Europe. The models developed are applicable to other aerial dispersed emerging pathogens and document that high-evolutionary-risk plant pathogens can move over long distances to cause disease due to their large effective population size, population expansion and dispersal.


Assuntos
Nicotiana/microbiologia , Peronospora/fisiologia , Sequência de Bases , Europa (Continente) , Geografia , Funções Verossimilhança , Movimento , América do Norte , Filogenia
10.
Mol Biol Evol ; 33(2): 478-91, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26576850

RESUMO

As the oomycete pathogen causing potato late blight disease, Phytophthora infestans triggered the famous 19th-century Irish potato famine and remains the leading cause of global commercial potato crop destruction. But the geographic origin of the genotype that caused this devastating initial outbreak remains disputed, as does the New World center of origin of the species itself. Both Mexico and South America have been proposed, generating considerable controversy. Here, we readdress the pathogen's origins using a genomic data set encompassing 71 globally sourced modern and historical samples of P. infestans and the hybrid species P. andina, a close relative known only from the Andean highlands. Previous studies have suggested that the nuclear DNA lineage behind the initial outbreaks in Europe in 1845 is now extinct. Analysis of P. andina's phased haplotypes recovered eight haploid genome sequences, four of which represent a previously unknown basal lineage of P. infestans closely related to the famine-era lineage. Our analyses further reveal that clonal lineages of both P. andina and historical P. infestans diverged earlier than modern Mexican lineages, casting doubt on recent claims of a Mexican center of origin. Finally, we use haplotype phasing to demonstrate that basal branches of the clade comprising Mexican samples are occupied by clonal isolates collected from wild Solanum hosts, suggesting that modern Mexican P. infestans diversified on Solanum tuberosum after a host jump from a wild species and that the origins of P. infestans are more complex than was previously thought.


Assuntos
Evolução Molecular , Genoma , Genômica , Hibridização Genética , Phytophthora infestans/classificação , Phytophthora infestans/genética , Fluxo Gênico , Genoma Mitocondrial , Genômica/métodos , Genótipo , Haplótipos , Desequilíbrio de Ligação , Filogenia , Doenças das Plantas , Reprodução/genética , América do Sul
11.
Phytopathology ; 107(12): 1541-1548, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28820343

RESUMO

Pseudocercospora fijiensis is the causal pathogen of black Sigatoka, a devastating disease of banana that can cause 20 to 80% yield loss in the absence of fungicides in banana crops. The genetic structure of populations of P. fijiensis in Costa Rica was examined and compared with Honduran and global populations to better understand migration patterns and inform management strategies. In total, 118 isolates of P. fijiensis collected from Costa Rica and Honduras from 2010 to 2014 were analyzed using multilocus genotyping of six loci and compared with a previously published global dataset of populations of P. fijiensis. The Costa Rican and Honduran populations shared haplotype diversity with haplotypes from Southeast Asia, Oceania, and the Americas but not Africa for all but one of the six loci studied. Gene flow and shared haplotype diversity was found in Honduran and Costa Rican populations of the pathogen. The data indicate that the haplotypic diversity observed in Costa Rican populations of P. fijiensis is derived from dispersal from initial outbreak sources in Honduras and admixtures between genetically differentiated sources from Southeast Asia, Oceania, and the Americas.


Assuntos
Ascomicetos/genética , Variação Genética , Musa/microbiologia , Doenças das Plantas/microbiologia , Ascomicetos/isolamento & purificação , Sudeste Asiático , Costa Rica , Genética Populacional , Genótipo , Haplótipos , Filogeografia , Análise de Sequência de DNA
12.
Mol Biol Evol ; 31(6): 1414-20, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24577840

RESUMO

The plant pathogen Phytophthora infestans emerged in Europe in 1845, triggering the Irish potato famine and massive European potato crop losses that continued until effective fungicides were widely employed in the 20th century. Today the pathogen is ubiquitous, with more aggressive and virulent strains surfacing in recent decades. Recently, complete P. infestans mitogenome sequences from 19th-century herbarium specimens were shown to belong to a unique lineage (HERB-1) predicted to be rare or extinct in modern times. We report 44 additional P. infestans mitogenomes: four from 19th-century Europe, three from 1950s UK, and 37 from modern populations across the New World. We use phylogenetic analyses to identify the HERB-1 lineage in modern populations from both Mexico and South America, and to demonstrate distinct mitochondrial haplotypes were present in 19th-century Europe, with this lineage initially diversifying 75 years before the first reports of potato late blight.


Assuntos
DNA Mitocondrial/análise , Phytophthora infestans/classificação , Phytophthora infestans/isolamento & purificação , Doenças das Plantas/parasitologia , Solanum tuberosum/parasitologia , América , Teorema de Bayes , Evolução Molecular , História do Século XIX , Irlanda , Filogenia , Filogeografia , Phytophthora infestans/genética , Doenças das Plantas/história , Inanição/história , Reino Unido
13.
Curr Genet ; 61(4): 567-77, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25754775

RESUMO

Phytophthora infestans is one of the most destructive plant pathogens of potato and tomato globally. The pathogen is closely related to four other Phytophthora species in the 1c clade including P. phaseoli, P. ipomoeae, P. mirabilis and P. andina that are important pathogens of other wild and domesticated hosts. P. andina is an interspecific hybrid between P. infestans and an unknown Phytophthora species. We have sequenced mitochondrial genomes of the sister species of P. infestans and examined the evolutionary relationships within the clade. Phylogenetic analysis indicates that the P. phaseoli mitochondrial lineage is basal within the clade. P. mirabilis and P. ipomoeae are sister lineages and share a common ancestor with the Ic mitochondrial lineage of P. andina. These lineages in turn are sister to the P. infestans and P. andina Ia mitochondrial lineages. The P. andina Ic lineage diverged much earlier than the P. andina Ia mitochondrial lineage and P. infestans. The presence of two mitochondrial lineages in P. andina supports the hybrid nature of this species. The ancestral state of the P. andina Ic lineage in the tree and its occurrence only in the Andean regions of Ecuador, Colombia and Peru suggests that the origin of this species hybrid in nature may occur there.


Assuntos
Genoma Mitocondrial , Mitocôndrias/genética , Filogenia , Phytophthora infestans/genética , Phytophthora/genética , Evolução Biológica , Quimera/microbiologia , Colômbia , DNA Mitocondrial/genética , Equador , Solanum lycopersicum/microbiologia , Peru , Filogeografia , Phytophthora/classificação , Phytophthora infestans/classificação , Doenças das Plantas/microbiologia , Análise de Sequência de DNA , Solanum tuberosum/microbiologia
14.
Plant Dis ; 99(5): 659-666, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-30699679

RESUMO

Phytophthora infestans causes potato late blight, an important and costly disease of potato and tomato crops. Seven clonal lineages of P. infestans identified recently in the United States were tested for baseline sensitivity to six oomycete-targeted fungicides. A subset of the dominant lineages (n = 45) collected between 2004 and 2012 was tested in vitro on media amended with a range of concentrations of either azoxystrobin, cyazofamid, cymoxanil, fluopicolide, mandipropamid, or mefenoxam. Dose-response curves and values for the effective concentration at which 50% of growth was suppressed were calculated for each isolate. The US-8 and US-11 clonal lineages were insensitive to mefenoxam while the US-20, US-21, US-22, US-23, and US-24 clonal lineages were sensitive to mefenoxam. Insensitivity to azoxystrobin, cyazofamid, cymoxanil, fluopicolide, or mandipropamid was not detected within any lineage. Thus, current U.S. populations of P. infestans remained sensitive to mefenoxam during the displacement of the US-22 lineage by US-23 over the past 5 years.

15.
Nat Commun ; 15(1): 6488, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103347

RESUMO

Phytophthora infestans is a major oomycete plant pathogen, responsible for potato late blight, which led to the Irish Potato Famine from 1845-1852. Since then, potatoes resistant to this disease have been bred and deployed worldwide. Their resistance (R) genes recognize pathogen effectors responsible for virulence and then induce a plant response stopping disease progression. However, most deployed R genes are quickly overcome by the pathogen. We use targeted sequencing of effector and R genes on herbarium specimens to examine the joint evolution in both P. infestans and potato from 1845-1954. Currently relevant effectors are historically present in P. infestans, but with alternative alleles compared to modern reference genomes. The historic FAM-1 lineage has the virulent Avr1 allele and the ability to break the R1 resistance gene before breeders deployed it in potato. The FAM-1 lineage is diploid, but later, triploid US-1 lineages appear. We show that pathogen virulence genes and host resistance genes have undergone significant changes since the Famine, from both natural and artificial selection.


Assuntos
Resistência à Doença , Phytophthora infestans , Doenças das Plantas , Solanum tuberosum , Phytophthora infestans/genética , Phytophthora infestans/patogenicidade , Solanum tuberosum/microbiologia , Doenças das Plantas/microbiologia , Resistência à Doença/genética , Interações Hospedeiro-Patógeno/genética , Virulência/genética , Fome Epidêmica , Evolução Molecular , Irlanda , Alelos , Filogenia , História do Século XIX
16.
Sci Rep ; 14(1): 2523, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360880

RESUMO

In 1843, a hitherto unknown plant pathogen entered the US and spread to potato fields in the northeast. By 1845, the pathogen had reached Ireland leading to devastating famine. Questions arose immediately about the source of the outbreaks and how the disease should be managed. The pathogen, now known as Phytophthora infestans, still continues to threaten food security globally. A wealth of untapped knowledge exists in both archival and modern documents, but is not readily available because the details are hidden in descriptive text. In this work, we (1) used text analytics of unstructured historical reports (1843-1845) to map US late blight outbreaks; (2) characterized theories on the source of the pathogen and remedies for control; and (3) created modern late blight intensity maps using Twitter feeds. The disease spread from 5 to 17 states and provinces in the US and Canada between 1843 and 1845. Crop losses, Andean sources of the pathogen, possible causes and potential treatments were discussed. Modern disease discussion on Twitter included near-global coverage and local disease observations. Topic modeling revealed general disease information, published research, and outbreak locations. The tools described will help researchers explore and map unstructured text to track and visualize pandemics.


Assuntos
Phytophthora infestans , Solanum tuberosum , Humanos , Doenças das Plantas , Surtos de Doenças , Irlanda
17.
PLoS One ; 18(4): e0283540, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37011062

RESUMO

Phytophthora species cause severe diseases on food, forest, and ornamental crops. Since the genus was described in 1876, it has expanded to comprise over 190 formally described species. There is a need for an open access phylogenetic tool that centralizes diverse streams of sequence data and metadata to facilitate research and identification of Phytophthora species. We used the Tree-Based Alignment Selector Toolkit (T-BAS) to develop a phylogeny of 192 formally described species and 33 informal taxa in the genus Phytophthora using sequences of eight nuclear genes. The phylogenetic tree was inferred using the RAxML maximum likelihood program. A search engine was also developed to identify microsatellite genotypes of P. infestans based on genetic distance to known lineages. The T-BAS tool provides a visualization framework allowing users to place unknown isolates on a curated phylogeny of all Phytophthora species. Critically, the tree can be updated in real-time as new species are described. The tool contains metadata including clade, host species, substrate, sexual characteristics, distribution, and reference literature, which can be visualized on the tree and downloaded for other uses. This phylogenetic resource will allow data sharing among research groups and the database will enable the global Phytophthora community to upload sequences and determine the phylogenetic placement of an isolate within the larger phylogeny and to download sequence data and metadata. The database will be curated by a community of Phytophthora researchers and housed on the T-BAS web portal in the Center for Integrated Fungal Research at NC State. The T-BAS web tool can be leveraged to create similar metadata enhanced phylogenies for other Oomycete, bacterial or fungal pathogens.


Assuntos
Phytophthora , Filogenia , Phytophthora/genética , Genótipo
18.
Front Plant Sci ; 14: 1282188, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38273942

RESUMO

Introduction: Understanding patterns of plant-microbe interactions across plant species and populations is a critical yet poorly characterized aspect in the field of plant pathology. Microbial DNA sequences present as contaminants in omics data of plants obtained using next-generation sequencing methods provide a valuable source to explore the relationships among endophytic microbial diversity, disease and genetic differentiation of host plants, and environmental variation, but few such studies have been conducted. The flowering dogwood tree (Cornus florida L.), an ecologically important species in North America, is threatened by powdery mildew and dogwood anthracnose diseases, and knowledge of the microbial diversity harbored within genetically and environmental distinct populations of this species remains largely unknown. Methods: We conducted a metagenomics study utilizing the sequences of RAD-tag/genotype-by-sequence libraries from leaf tissues of C. florida to examine such host-fungus interactions across the dogwood's US range. We performed various combinations of alignments to both host and pathogen genomes to obtain filtered sets sequences for metagenomics analysis. Taxonomic assignments were determined on each filtered set of sequences, followed by estimation of microbial diversity and correlation to environment and host-genetic variation. Results: Our data showed that microbial community composition significantly differed between visually healthy and diseased sites. Several microbial taxa known to interact with dogwood were identified from these sequences. We found no correlation between microbial diversity and relative abundances of sequences aligning to draft genomes of either pathogen causing powdery mildew or dogwood anthracnose. We found a significant relationship between differences of fungal communities and geographic distances of plant populations, suggesting roles of environments in shaping fungal communities in leaf tissues. Significant correlations between the genetic differentiation of plant samples and fungal community dissimilarity (beta diversity) were also observed in certain sets of our analyses-suggesting the possibility of a relationship between microbial community composition and plant genetic distance. This relationship persisted in significance even after controlling for significant effects of geographic-bioclimatic variation of microbial diversity. Discussion: Our results suggest that both genetics and the environment play a significant role in shaping foliar fungal communities. Our findings underscore the power of leveraging hidden microbial sequences within datasets originally collected for plant genetic studies to understand plant-pathogen interactions.

19.
Sci Adv ; 9(15): eade2232, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37043563

RESUMO

Wearable plant sensors hold tremendous potential for smart agriculture. We report a lower leaf surface-attached multimodal wearable sensor for continuous monitoring of plant physiology by tracking both biochemical and biophysical signals of the plant and its microenvironment. Sensors for detecting volatile organic compounds (VOCs), temperature, and humidity are integrated into a single platform. The abaxial leaf attachment position is selected on the basis of the stomata density to improve the sensor signal strength. This versatile platform enables various stress monitoring applications, ranging from tracking plant water loss to early detection of plant pathogens. A machine learning model was also developed to analyze multichannel sensor data for quantitative detection of tomato spotted wilt virus as early as 4 days after inoculation. The model also evaluates different sensor combinations for early disease detection and predicts that minimally three sensors are required including the VOC sensors.


Assuntos
Compostos Orgânicos Voláteis , Dispositivos Eletrônicos Vestíveis , Folhas de Planta , Temperatura , Fenômenos Fisiológicos Vegetais , Plantas
20.
Phytopathology ; 102(6): 635-45, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22568817

RESUMO

The genus Phytophthora consists of many species that cause important diseases in ornamental, agronomic, and forest ecosystems worldwide. Molecular methods have been developed for detection and identification of one or several species of Phytophthora in single or multiplex reactions. In this article, we describe a padlock probe (PLP)-based multiplex method of detection and identification for many Phytophthora spp. simultaneously. A generic TaqMan polymerase chain reaction assay, which detects all known Phytophthora spp., is conducted first, followed by a species-specific PLP ligation. A 96-well-based microarray platform with colorimetric readout is used to detect and identify the different Phytophthora spp. PLPs are long oligonucleotides containing target complementary sequence regions at both their 5' and 3' ends which can be ligated on the target into a circular molecule. The ligation is point mutation specific; therefore, closely related sequences can be differentiated. This circular molecule can then be detected on a microarray. We developed 23 PLPs to economically important Phytophthora spp. based upon internal transcribed spacer-1 sequence differences between individual Phytophthora spp. Tests on genomic DNA of many Phytophthora isolates and DNA from environmental samples showed the specificity and utility of PLPs for Phytophthora diagnostics.


Assuntos
Reação em Cadeia da Polimerase Multiplex/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Phytophthora/classificação , Phytophthora/isolamento & purificação , Doenças das Plantas/parasitologia , Plantas/parasitologia , Animais , Colorimetria/instrumentação , Primers do DNA/genética , DNA Espaçador Ribossômico/genética , Técnicas de Diagnóstico Molecular , Sondas de Oligonucleotídeos/genética , Phytophthora/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA