Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 25(11): 2360-2365, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27146844

RESUMO

Cohort-wide very low-depth whole-genome sequencing (WGS) can comprehensively capture low-frequency sequence variation for the cost of a dense genome-wide genotyping array. Here, we analyse 1x sequence data across the APOC3 gene in a founder population from the island of Crete in Greece (n = 1239) and find significant evidence for association with blood triglyceride levels with the previously reported R19X cardioprotective null mutation (ß = -1.09,σ = 0.163, P = 8.2 × 10-11) and a second loss of function mutation, rs138326449 (ß = -1.17,σ = 0.188, P = 1.14 × 10-9). The signal cannot be recapitulated by imputing genome-wide genotype data on a large reference panel of 5122 individuals including 249 with 4x WGS data from the same population. Gene-level meta-analysis with other studies reporting burden signals at APOC3 provides robust evidence for a replicable cardioprotective rare variant aggregation (P = 3.2 × 10-31, n = 13 480).


Assuntos
Apolipoproteína C-III/genética , Doenças Cardiovasculares/genética , Sequenciamento de Nucleotídeos em Larga Escala , Triglicerídeos/genética , Alelos , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/patologia , Feminino , Efeito Fundador , Genética Populacional , Genoma Humano , Estudo de Associação Genômica Ampla , Genótipo , Grécia , Humanos , Masculino , Mutação , Polimorfismo de Nucleotídeo Único , Triglicerídeos/sangue , População Branca/genética
2.
Eur J Hum Genet ; 24(10): 1479-87, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27049301

RESUMO

We have whole-exome sequenced 176 individuals from the isolated population of the island of Vis in Croatia in order to describe exonic variation architecture. We found 290 577 single nucleotide variants (SNVs), 65% of which are singletons, low frequency or rare variants. A total of 25 430 (9%) SNVs are novel, previously not catalogued in NHLBI GO Exome Sequencing Project, UK10K-Generation Scotland, 1000Genomes Project, ExAC or NCBI Reference Assembly dbSNP. The majority of these variants (76%) are singletons. Comparable to data obtained from UK10K-Generation Scotland that were sequenced and analysed using the same protocols, we detected an enrichment of potentially damaging variants (non-synonymous and loss-of-function) in the low frequency and common variant categories. On average 115 (range 93-140) genotypes with loss-of-function variants, 23 (15-34) of which were homozygous, were identified per person. The landscape of loss-of-function variants across an exome revealed that variants mainly accumulated in genes on the xenobiotic-related pathways, of which majority coded for enzymes. The frequency of loss-of-function variants was additionally increased in Vis runs of homozygosity regions where variants mainly affected signalling pathways. This work confirms the isolate status of Vis population by means of whole-exome sequence and reveals the pattern of loss-of-function mutations, which resembles the trails of adaptive evolution that were found in other species. By cataloguing the exomic variants and describing the allelic structure of the Vis population, this study will serve as a valuable resource for future genetic studies of human diseases, population genetics and evolution in this population.


Assuntos
Exoma , População/genética , Croácia , Evolução Molecular , Frequência do Gene , Humanos , Ilhas , Mutação , Polimorfismo de Nucleotídeo Único , Isolamento Reprodutivo
3.
J Biomed Semantics ; 6: 32, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26229585

RESUMO

BACKGROUND: The Genome Variant Format (GVF) uses the Sequence Ontology (SO) to enable detailed annotation of sequence variation. The annotation includes SO terms for the type of sequence alteration, the genomic features that are changed and the effect of the alteration. The SO maintains and updates the specification and provides the underlying ontologicial structure. METHODS: A requirements analysis was undertaken to gather terms missing in the SO release at the time, but needed to adequately describe the effects of sequence alteration on a set of variant genomic annotations. We have extended and remodeled the SO to include and define all terms that describe the effect of variation upon reference genomic features in the Ensembl variation databases. RESULTS: The new terminology was used to annotate the human reference genome with a set of variants from both COSMIC and dbSNP. A GVF file containing 170,853 sequence alterations was generated using the SO terminology to annotate the kinds of alteration, the effect of the alteration and the reference feature changed. There are four kinds of alteration and 24 kinds of effect seen in this dataset. (Ensembl Variation annotates 34 different SO consequence terms: http://www.ensembl.org/info/docs/variation/predicted_data.html). CONCLUSIONS: We explain the updates to the Sequence Ontology to describe the effect of variation on existing reference features. We have provided a set of annotations using this terminology, and the well defined GVF specification. We have also provided a provisional exploration of this large annotation dataset.

4.
Genome Med ; 6(10): 87, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25473426

RESUMO

Identifying sequence variants that play a mechanistic role in human disease and other phenotypes is a fundamental goal in human genetics and will be important in translating the results of variation studies. Experimental validation to confirm that a variant causes the biochemical changes responsible for a given disease or phenotype is considered the gold standard, but this cannot currently be applied to the 3 million or so variants expected in an individual genome. This has prompted the development of a wide variety of computational approaches that use several different sources of information to identify functional variation. Here, we review and assess the limitations of computational techniques for categorizing variants according to functional classes, prioritizing variants for experimental follow-up and generating hypotheses about the possible molecular mechanisms to inform downstream experiments. We discuss the main current bioinformatics approaches to identifying functional variation, including widely used algorithms for coding variation such as SIFT and PolyPhen and also novel techniques for interpreting variation across the genome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA