Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Med Phys ; 51(4): 2846-2860, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37972365

RESUMO

BACKGROUND: One of the limitations in leveraging the potential of artificial intelligence in X-ray imaging is the limited availability of annotated training data. As X-ray and CT shares similar imaging physics, one could achieve cross-domain data sharing, so to generate labeled synthetic X-ray images from annotated CT volumes as digitally reconstructed radiographs (DRRs). To account for the lower resolution of CT and the CT-generated DRRs as compared to the real X-ray images, we propose the use of super-resolution (SR) techniques to enhance the CT resolution before DRR generation. PURPOSE: As spatial resolution can be defined by the modulation transfer function kernel in CT physics, we propose to train a SR network using paired low-resolution (LR) and high-resolution (HR) images by varying the kernel's shape and cutoff frequency. This is different to previous deep learning-based SR techniques on RGB and medical images which focused on refining the sampling grid. Instead of generating LR images by bicubic interpolation, we aim to create realistic multi-detector CT (MDCT) like LR images from HR cone-beam CT (CBCT) scans. METHODS: We propose and evaluate the use of a SR U-Net for the mapping between LR and HR CBCT image slices. We reconstructed paired LR and HR training volumes from the same CT scans with small in-plane sampling grid size of 0.20 × 0.20 mm 2 $0.20 \times 0.20 \, {\rm mm}^2$ . We used the residual U-Net architecture to train two models. SRUN R e s K $^K_{Res}$ : trained with kernel-based LR images, and SRUN R e s I $^I_{Res}$ : trained with bicubic downsampled data as baseline. Both models are trained on one CBCT dataset (n = 13 391). The performance of both models was then evaluated on unseen kernel-based and interpolation-based LR CBCT images (n = 10 950), and also on MDCT images (n = 1392). RESULTS: Five-fold cross validation and ablation study were performed to find the optimal hyperparameters. Both SRUN R e s K $^K_{Res}$ and SRUN R e s I $^I_{Res}$ models show significant improvements (p-value < $<$ 0.05) in mean absolute error (MAE), peak signal-to-noise ratio (PSNR) and structural similarity index measures (SSIMs) on unseen CBCT images. Also, the improvement percentages in MAE, PSNR, and SSIM by SRUN R e s K $^K_{Res}$ is larger than SRUN R e s I $^I_{Res}$ . For SRUN R e s K $^K_{Res}$ , MAE is reduced by 14%, and PSNR and SSIMs increased by 6 and 8%, respectively. To conclude, SRUN R e s K $^K_{Res}$ outperforms SRUN R e s I $^I_{Res}$ , which the former generates sharper images when tested with kernel-based LR CBCT images as well as cross-modality LR MDCT data. CONCLUSIONS: Our proposed method showed better performance than the baseline interpolation approach on unseen LR CBCT. We showed that the frequency behavior of the used data is important for learning the SR features. Additionally, we showed cross-modality resolution improvements to LR MDCT images. Our approach is, therefore, a first and essential step in enabling realistic high spatial resolution CT-generated DRRs for deep learning training.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Inteligência Artificial , Tomografia Computadorizada por Raios X , Tomografia Computadorizada de Feixe Cônico/métodos
2.
Med Phys ; 51(5): 3360-3375, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38150576

RESUMO

BACKGROUND: Due to the high attenuation of metals, severe artifacts occur in cone beam computed tomography (CBCT). The metal segmentation in CBCT projections usually serves as a prerequisite for metal artifact reduction (MAR) algorithms. PURPOSE: The occurrence of truncation caused by the limited detector size leads to the incomplete acquisition of metal masks from the threshold-based method in CBCT volume. Therefore, segmenting metal directly in CBCT projections is pursued in this work. METHODS: Since the generation of high quality clinical training data is a constant challenge, this study proposes to generate simulated digital radiographs (data I) based on real CT data combined with self-designed computer aided design (CAD) implants. In addition to the simulated projections generated from 3D volumes, 2D x-ray images combined with projections of implants serve as the complementary data set (data II) to improve the network performance. In this work, SwinConvUNet consisting of shift window (Swin) vision transformers (ViTs) with patch merging as encoder is proposed for metal segmentation. RESULTS: The model's performance is evaluated on accurately labeled test datasets obtained from cadaver scans as well as the unlabeled clinical projections. When trained on the data I only, the convolutional neural network (CNN) encoder-based networks UNet and TransUNet achieve only limited performance on the cadaver test data, with an average dice score of 0.821 and 0.850. After using both data II and data I during training, the average dice scores for the two models increase to 0.906 and 0.919, respectively. By replacing the CNN encoder with Swin transformer, the proposed SwinConvUNet reaches an average dice score of 0.933 for cadaver projections when only trained on the data I. Furthermore, SwinConvUNet has the largest average dice score of 0.953 for cadaver projections when trained on the combined data set. CONCLUSIONS: Our experiments quantitatively demonstrate the effectiveness of the combination of the projections simulated under two pathways for network training. Besides, the proposed SwinConvUNet trained on the simulated projections performs state-of-the-art, robust metal segmentation as demonstrated on experiments on cadaver and clinical data sets. With the accurate segmentations from the proposed model, MAR can be conducted even for highly truncated CBCT scans.


Assuntos
Artefatos , Tomografia Computadorizada de Feixe Cônico , Processamento de Imagem Assistida por Computador , Metais , Tomografia Computadorizada de Feixe Cônico/métodos , Metais/química , Processamento de Imagem Assistida por Computador/métodos , Humanos , Simulação por Computador , Algoritmos
3.
Med Phys ; 51(3): 1653-1673, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38323878

RESUMO

BACKGROUND: Dual-energy (DE) detection of bone marrow edema (BME) would be a valuable new diagnostic capability for the emerging orthopedic cone-beam computed tomography (CBCT) systems. However, this imaging task is inherently challenging because of the narrow energy separation between water (edematous fluid) and fat (health yellow marrow), requiring precise artifact correction and dedicated material decomposition approaches. PURPOSE: We investigate the feasibility of BME assessment using kV-switching DE CBCT with a comprehensive CBCT artifact correction framework and a two-stage projection- and image-domain three-material decomposition algorithm. METHODS: DE CBCT projections of quantitative BME phantoms (water containers 100-165 mm in size with inserts presenting various degrees of edema) and an animal cadaver model of BME were acquired on a CBCT test bench emulating the standard wrist imaging configuration of a Multitom Rax twin robotic x-ray system. The slow kV-switching scan protocol involved a 60 kV low energy (LE) beam and a 120 kV high energy (HE) beam switched every 0.5° over a 200° angular span. The DE CBCT data preprocessing and artifact correction framework consisted of (i) projection interpolation onto matched LE and HE projections views, (ii) lag and glare deconvolutions, and (iii) efficient Monte Carlo (MC)-based scatter correction. Virtual non-calcium (VNCa) images for BME detection were then generated by projection-domain decomposition into an Aluminium (Al) and polyethylene basis set (to remove beam hardening) followed by three-material image-domain decomposition into water, Ca, and fat. Feasibility of BME detection was quantified in terms of VNCa image contrast and receiver operating characteristic (ROC) curves. Robustness to object size, position in the field of view (FOV) and beam collimation (varied 20-160 mm) was investigated. RESULTS: The MC-based scatter correction delivered > 69% reduction of cupping artifacts for moderate to wide collimations (> 80 mm beam width), which was essential to achieve accurate DE material decomposition. In a forearm-sized object, a 20% increase in water concentration (edema) of a trabecular bone-mimicking mixture presented as ∼15 HU VNCa contrast using 80-160 mm beam collimations. The variability with respect to object position in the FOV was modest (< 15% coefficient of variation). The areas under the ROC curve were > 0.9. A femur-sized object presented a somewhat more challenging task, resulting in increased sensitivity to object positioning at 160 mm collimation. In animal cadaver specimens, areas of VNCa enhancement consistent with BME were observed in DE CBCT images in regions of MRI-confirmed edema. CONCLUSION: Our results indicate that the proposed artifact correction and material decomposition pipeline can overcome the challenges of scatter and limited spectral separation to achieve relatively accurate and sensitive BME detection in DE CBCT. This study provides an important baseline for clinical translation of musculoskeletal DE CBCT to quantitative, point-of-care bone health assessment.


Assuntos
Medula Óssea , Tomografia Computadorizada de Feixe Cônico , Humanos , Medula Óssea/diagnóstico por imagem , Estudos de Viabilidade , Tomografia Computadorizada de Feixe Cônico/métodos , Algoritmos , Imagens de Fantasmas , Edema , Cadáver , Água , Espalhamento de Radiação , Processamento de Imagem Assistida por Computador/métodos
4.
J Med Imaging (Bellingham) ; 10(6): 064003, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38074628

RESUMO

Purpose: High noise levels due to low X-ray dose are a challenge in digital breast tomosynthesis (DBT) reconstruction. Deep learning algorithms show promise in reducing this noise. However, these algorithms can be complex and biased toward certain patient groups if the training data are not representative. It is important to thoroughly evaluate deep learning-based denoising algorithms before they are applied in the medical field to ensure their effectiveness and fairness. In this work, we present a deep learning-based denoising algorithm and examine potential biases with respect to breast density, thickness, and noise level. Approach: We use physics-driven data augmentation to generate low-dose images from full field digital mammography and train an encoder-decoder network. The rectified linear unit (ReLU)-loss, specifically designed for mammographic denoising, is utilized as the objective function. To evaluate our algorithm for potential biases, we tested it on both clinical and simulated data generated with the virtual imaging clinical trial for regulatory evaluation pipeline. Simulated data allowed us to generate X-ray dose distributions not present in clinical data, enabling us to separate the influence of breast types and X-ray dose on the denoising performance. Results: Our results show that the denoising performance is proportional to the noise level. We found a bias toward certain breast groups on simulated data; however, on clinical data, our algorithm denoises different breast types equally well with respect to structural similarity index. Conclusions: We propose a robust deep learning-based denoising algorithm that reduces DBT projection noise levels and subject it to an extensive test that provides information about its strengths and weaknesses.

5.
Med Phys ; 50(8): e904-e945, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36710257

RESUMO

This report reviews the image acquisition and reconstruction characteristics of C-arm Cone Beam Computed Tomography (C-arm CBCT) systems and provides guidance on quality control of C-arm systems with this volumetric imaging capability. The concepts of 3D image reconstruction, geometric calibration, image quality, and dosimetry covered in this report are also pertinent to CBCT for Image-Guided Radiation Therapy (IGRT). However, IGRT systems introduce a number of additional considerations, such as geometric alignment of the imaging at treatment isocenter, which are beyond the scope of the charge to the task group and the report. Section 1 provides an introduction to C-arm CBCT systems and reviews a variety of clinical applications. Section 2 briefly presents nomenclature specific or unique to these systems. A short review of C-arm fluoroscopy quality control (QC) in relation to 3D C-arm imaging is given in Section 3. Section 4 discusses system calibration, including geometric calibration and uniformity calibration. A review of the unique approaches and challenges to 3D reconstruction of data sets acquired by C-arm CBCT systems is give in Section 5. Sections 6 and 7 go in greater depth to address the performance assessment of C-arm CBCT units. First, Section 6 describes testing approaches and phantoms that may be used to evaluate image quality (spatial resolution and image noise and artifacts) and identifies several factors that affect image quality. Section 7 describes both free-in-air and in-phantom approaches to evaluating radiation dose indices. The methodologies described for assessing image quality and radiation dose may be used for annual constancy assessment and comparisons among different systems to help medical physicists determine when a system is not operating as expected. Baseline measurements taken either at installation or after a full preventative maintenance service call can also provide valuable data to help determine whether the performance of the system is acceptable. Collecting image quality and radiation dose data on existing phantoms used for CT image quality and radiation dose assessment, or on newly developed phantoms, will inform the development of performance criteria and standards. Phantom images are also useful for identifying and evaluating artifacts. In particular, comparing baseline data with those from current phantom images can reveal the need for system calibration before image artifacts are detected in clinical practice. Examples of artifacts are provided in Sections 4, 5, and 6.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Radiometria , Tomografia Computadorizada de Feixe Cônico/métodos , Imageamento Tridimensional , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos
6.
Artigo em Inglês | MEDLINE | ID: mdl-38223466

RESUMO

We investigate the feasibility of bone marrow edema (BME) detection using a kV-switching Dual-Energy (DE) Cone-Beam CT (CBCT) protocol. This task is challenging due to unmatched x-ray paths in the low-energy (LE) and high-energy (HE) spectral channels, CBCT non-idealities such as x-ray scatter, and narrow spectral separation between fat (bone marrow) and water (BME). We propose a comprehensive DE decomposition framework consisting of projection interpolation onto matching LE and HE view angles, fast Monte Carlo scatter correction with low number of tracked photons and Gaussian denoising, and two-stage three-material decompositions involving two-material (fat-Aluminium) Projection-Domain Decomposition (PDD) followed by image-domain three-material (fat-water-bone) base-change. Performance in BME detection was evaluated in simulations and experiments emulating a kV-switching CBCT wrist imaging protocol on a robotic x-ray system with 60 kV LE beam, 120 kV HE beam, and 0.5° angular shift between the LE and HE views. Cubic B-spline interpolation was found to be adequate to resample HE and LE projections of a wrist onto common view angles required by PDD. The DE decomposition maintained acceptable BME detection specificity (<0.2 mL erroneously detected BME volume compared to 0.85 mL true BME volume) over +/-10% range of scatter magnitude errors, as long as the scatter shape was estimated without major distortions. Physical test bench experiments demonstrated successful discrimination of ~20% change in fat concentrations in trabecular bone-mimicking solutions of varying water and fat content.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38223908

RESUMO

Purpose: We investigated the feasibility of detection and quantification of bone marrow edema (BME) using dual-energy (DE) Cone-Beam CT (CBCT) with a dual-layer flat panel detector (FPD) and three-material decomposition. Methods: A realistic CBCT system simulator was applied to study the impact of detector quantization, scatter, and spectral calibration errors on the accuracy of fat-water-bone decompositions of dual-layer projections. The CBCT system featured 975 mm source-axis distance, 1,362 mm source-detector distance and a 430 × 430 mm2 dual-layer FPD (top layer: 0.20 mm CsI:Tl, bottom layer: 0.55 mm CsI:Tl; a 1 mm Cu filter between the layers to improve spectral separation). Tube settings were 120 kV (+2 mm Al, +0.2 mm Cu) and 10 mAs per exposure. The digital phantom consisted of a 160 mm water cylinder with inserts containing mixtures of water (volume fraction ranging 0.18 to 0.46) - fat (0.5 to 0.7) - Ca (0.04 to 0.12); decreasing fractions of fat indicated increasing degrees of BME. A two-stage three-material DE decomposition was applied to DE CBCT projections: first, projection-domain decomposition (PDD) into fat-aluminum basis, followed by CBCT reconstruction of intermediate base images, followed by image-domain change of basis into fat, water and bone. Sensitivity to scatter was evaluated by i) adjusting source collimation (12 to 400 mm width) and ii) subtracting various fractions of the true scatter from the projections at 400 mm collimation. The impact of spectral calibration was studied by shifting the effective beam energy (± 2 keV) when creating the PDD lookup table. We further simulated a realistic BME imaging framework, where the scatter was estimated using a fast Monte Carlo (MC) simulation from a preliminary decomposition of the object; the object was a realistic wrist phantom with an 0.85 mL BME stimulus in the radius. Results: The decomposition is sensitive to scatter: approx. <20 mm collimation width or <10% error of scatter correction in a full field-of-view setting is needed to resolve BME. A mismatch in PDD decomposition calibration of ± 1 keV results in ~25% error in fat fraction estimates. In the wrist phantom study with MC scatter corrections, we were able to achieve ~0.79 mL true positive and ~0.06 mL false positive BME detection (compared to 0.85 mL true BME volume). Conclusions: Detection of BME using DE CBCT with dual-layer FPD is feasible, but requires scatter mitigation, accurate scatter estimation, and robust spectral calibration.

8.
Med Phys ; 48(5): 2170-2184, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33368397

RESUMO

PURPOSE: This paper studies the abilities of a twin-robotic x-ray slot-scanning system for orthopedic imaging to reduce dose by scatter rejection compared to conventional digital radiography. METHODS: We investigate the dose saving capabilities, especially in terms of the signal- and the contrast-to-noise ratio, as well as the scatter-to-primary ratio of the proposed slot-scanning method in comparison to the state-of-the-art method for length-extended imaging. As a baseline, we use x-ray parameters of two clinically established acquisition protocols that provide the same detector entrance dose but are profoundly different in patient dose. To obtain an estimate of the photon-related noise directly from an x-ray image, we implement a Poisson-Gaussian noise model. This model is used to compare the dose efficiency of two settings and combined with the well-known K SNR to determine the transmission parameters. We present a method with an associated measurement protocol, utilizing the robotic capabilities of the used system to automatically obtain quasi-scatter-free ground-truth data with exact geometric correspondence to full-field and slot acquisitions. In total, we investigate two body regions (thoracic spine and lumbar spine) in anterior-posterior view with two patient sizes (BMI = 22 and 30) in two acquisition modes (conventional and slot scan with a flat-panel detector) with and without anti-scatter grid using an anthropomorphic upper-body phantom. RESULTS: We have shown that it is feasible to combine the proposed approach with the K SNR for the determination of scatter rejection parameters. The use of an anti-scatter grid is indicated for full-field acquisitions allowing for dose savings up to 46% compared to their gridless counterparts. When changing the acquisition mode to the investigated slot scan, the use of an anti-scatter grid has no major impact on the image quality in terms of dose efficiency, in particular for patients with a BMI of 22. However, an increased contrast improvement factor was found. For normal-sized patients, up to 53% of dose can be saved additionally in comparison to full-field acquisitions with grid. Moreover, we could demonstrate that a slot size of 5 cm and air gap of 10 cm is sufficient to achieve scatter-to-primary ratios, which are equal or better compared to those of the full-field acquisitions with a grid. CONCLUSIONS: We have shown, that the slot-scanning approach is always superior to the conventional full-field acquisition in terms of signal-to-noise and scatter-to-primary ratios. Compared to the state-of-the-art acquisition protocols with a grid, dose savings up to 53% are possible due to the scatter rejection without compromising the SNR. Hence, the use of the slot-scanning method is indicated, especially when it comes to regularly carried-out follow-up acquisitions, for example, in the case of scoliosis monitoring.


Assuntos
Intensificação de Imagem Radiográfica , Humanos , Imagens de Fantasmas , Cintilografia , Espalhamento de Radiação , Raios X
9.
Med Phys ; 48(11): 6673-6695, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34628651

RESUMO

PURPOSE: We investigate the feasibility of slot-scan dual-energy (DE) bone densitometry on motorized radiographic equipment. This approach will enable fast quantitative measurements of areal bone mineral density (aBMD) for opportunistic evaluation of osteoporosis. METHODS: We investigated DE slot-scan protocols to obtain aBMD measurements at the lumbar spine (L-spine) and hip using a motorized x-ray platform capable of synchronized translation of the x-ray source and flat-panel detector (FPD). The slot dimension was 5 × 20 cm2 . The DE slot views were processed as follows: (1) convolution kernel-based scatter correction, (2) unfiltered backprojection to tile the slots into long-length radiographs, and (3) projection-domain DE decomposition, consisting of an initial adipose-water decomposition in a bone-free region followed by water-CaHA decomposition with adjustment for adipose content. The accuracy and reproducibility of slot-scan aBMD measurements were investigated using a high-fidelity simulator of a robotic x-ray system (Siemens Multitom Rax) in a total of 48 body phantom realizations: four average bone density settings (cortical bone mass fraction: 10-40%), four body sizes (waist circumference, WC = 70-106 cm), and three lateral shifts of the body within the slot field of view (FOV) (centered and ±1 cm off-center). Experimental validations included: (1) x-ray test-bench feasibility study of adipose-water decomposition and (2) initial demonstration of slot-scan DE bone densitometry on the robotic x-ray system using the European Spine Phantom (ESP) with added attenuation (polymethyl methacrylate [PMMA] slabs) ranging 2 to 6 cm thick. RESULTS: For the L-spine, the mean aBMD error across all WC settings ranged from 0.08 g/cm2 for phantoms with average cortical bone fraction wcortical  = 10% to ∼0.01 g/cm2 for phantoms with wcortical  = 40%. The L-spine aBMD measurements were fairly robust to changes in body size and positioning, e.g., coefficient of variation (CV) for L1 with wcortical  = 30% was ∼0.034 for various WC and ∼0.02 for an obese patient (WC = 106 cm) changing lateral shift. For the hip, the mean aBMD error across all phantom configurations was about 0.07 g/cm2 for a centered patient. The reproducibility of hip aBMD was slightly worse than in the L-spine (e.g., in the femoral neck, the CV with respect to changing WC was ∼0.13 for phantom realizations with wcortical  = 30%) due to more challenging scatter estimation in the presence of an air-tissue interface within the slot FOV. The aBMD of the hip was therefore sensitive to lateral positioning of the patient, especially for obese patients: e.g., the CV with respect to patient lateral shift for femoral neck with WC = 106 cm and wcortical  = 30% was 0.14. Empirical evaluations confirmed substantial reduction in aBMD errors with the proposed adipose estimation procedure and demonstrated robust aBMD measurements on the robotic x-ray system, with aBMD errors of ∼0.1 g/cm2 across all three simulated ESP vertebrae and all added PMMA attenuator settings. CONCLUSIONS: We demonstrated that accurate aBMD measurements can be obtained on a motorized FPD-based x-ray system using DE slot-scans with kernel-based scatter correction, backprojection-based slot view tiling, and DE decomposition with adipose correction.


Assuntos
Densidade Óssea , Vértebras Lombares , Absorciometria de Fóton , Humanos , Vértebras Lombares/diagnóstico por imagem , Reprodutibilidade dos Testes , Raios X
10.
Med Phys ; 37(9): 5044-53, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20964224

RESUMO

PURPOSE: To evaluate several algorithms for 4D cone-beam computed tomography (4D CBCT) with slow rotating devices. 4D CBCT is used to perform phase-correlated (PC) reconstructions of moving objects, such as breathing patients, for example. Such motion phase-dependent reconstructions are especially useful for updating treatment plans in radiation therapy. The treatment plan can be registered more precisely to the motion of the tumor and, in consequence, the irradiation margins for the treatment, the so-called planning target volume, can be reduced significantly METHODS: In the study, several algorithms were evaluated for kilovoltage cone-beam CT units attached to linear particle accelerators. The reconstruction algorithms were the conventional PC reconstruction, the McKinnon-Bates (MKB) algorithm, the prior image constrained compressed sensing (PICCS) approach, a total variation minimization (ASD-POCS) algorithm, and the auto-adaptive phase correlation (AAPC) algorithm. For each algorithm, the same motion-affected raw data were used, i.e., one simulated and one measured data set. The reconstruction results from the authors' implementation of these algorithms were evaluated regarding their noise and artifact levels, their residual motion blur, and their computational complexity and convergence. RESULTS: In general, it turned out that the residual motion blur was lowest in those algorithms which exclusively use data from a single motion phase. Algorithms using the image from the full data set as initialization or as a reference for the reconstruction were not capable of fully removing the motion blurring. The iterative algorithms, especially approaches based on total variation minimization, showed lower noise and artifact levels but were computationally complex. The conventional methods based on a single filtered backprojection were computationally inexpensive but suffered from higher noise and streak artifacts which limit the usability. In contrast, these methods showed to be less demanding and more predictable in their outcome than the total variation minimization based approaches. CONCLUSIONS: The reconstruction algorithms including at least one iterative step can reduce the 4 CBCT specific artifacts. Nevertheless, the algorithms that use the full data set, at least for initialization, such as MKB and PICCS in the authors' implementation, are only a trade-off and may not fully achieve the optimal temporal resolution. A predictable image quality as seen in conventional reconstruction methods, i.e., without total variation minimization, is a desirable property for reconstruction algorithms. Fast, iterative approaches such as the MKB can therefore be seen as a suitable tradeoff.


Assuntos
Algoritmos , Tomografia Computadorizada de Feixe Cônico/instrumentação , Tomografia Computadorizada Quadridimensional/instrumentação , Rotação , Tomografia Computadorizada de Feixe Cônico/métodos , Tomografia Computadorizada Quadridimensional/métodos , Humanos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Fatores de Tempo
11.
Med Phys ; 47(8): 3305-3320, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32340069

RESUMO

PURPOSE: The recently introduced robotic x-ray systems provide the flexibility to acquire cone-beam computed tomography (CBCT) data using customized, application-specific source-detector trajectories. We exploit this capability to mitigate the effects of x-ray scatter and noise in CBCT imaging of weight-bearing foot and cervical spine (C-spine) using scan orbits with a tilted rotation axis. METHODS: We used an advanced CBCT simulator implementing accurate models of x-ray scatter, primary attenuation, and noise to investigate the effects of the orbital tilt angle in upright foot and C-spine imaging. The system model was parameterized using a laboratory version of a three-dimensional (3D) robotic x-ray system (Multitom RAX, Siemens Healthineers). We considered a generalized tilted axis scan configuration, where the detector remained parallel to patient's long body axis during the acquisition, but the elevation of source and detector was changing. A modified Feldkamp-Davis-Kress (FDK) algorithm was developed for reconstruction in this configuration, which departs from the FDK assumption of a detector that is perpendicular to the scan plane. The simulated foot scans involved source-detector distance (SDD) of 1386 mm, orbital tilt angles ranging 10° to 40°, and 400 views at 1 mAs/view and 0.5° increment; the C-spine scans involved -25° to -45° tilt angles, SDD of 1090 mm, and 202 views at 1.3 mAs and 1° increment The imaging performance was assessed by projection-domain measurements of the scatter-to-primary ratio (SPR) and by reconstruction-domain measurements of contrast, noise and generalized contrast-to-noise ratio (gCNR, accounting for both image noise and background nonuniformity) of the metatarsals (foot imaging) and cervical vertebrae (spine imaging). The effects of scatter correction were also compared for horizontal and tilted scans using an ideal Monte Carlo (MC)-based scatter correction and a frame-by-frame mean scatter correction. RESULTS: The proposed modified FDK, involving projection resampling, mitigated streak artifacts caused by the misalignment between the filtering direction and the detector rows. For foot imaging (no grids), an optimized 20° tilted orbit reduced the maximum SPR from ~1.5 in a horizontal scan to <0.5. The gCNR of the second metatarsal was enhanced twofold compared to a horizontal orbit. For the C-spine (with vertical grids), imaging with a tilted orbit avoided highly attenuating x-ray paths through the lower cervical vertebrae and shoulders. A -35° tilted orbit yielded improved image quality and visualization of the lower cervical spine: the SPR of lower cervical vertebrae was reduced from ~10 (horizontal orbit) to <6 (tilted orbit), and the gCNR for C5-C7 increased by a factor of 2. Furthermore, tilted orbits showed potential benefits over horizontal orbits by enabling scatter correction with a simple frame-by-frame mean correction without substantial increase in noise-induced artifacts after the correction. CONCLUSIONS: Tilted scan trajectories, enabled by the emerging robotic x-ray system technology, were optimized for CBCT imaging of foot and cervical spine using an advanced simulation framework. The results demonstrated the potential advantages of tilted axis orbits in mitigation of scatter artifacts and improving contrast-to-noise ratio in CBCT reconstructions.


Assuntos
Artefatos , Tomografia Computadorizada de Feixe Cônico , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Rotação , Espalhamento de Radiação
12.
Med Phys ; 46(12): 5454-5466, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31529513

RESUMO

PURPOSE: This paper studies spatial resolution that is achievable with a fast slot-scanning tomosynthesis approach for orthopedic examinations. Hereby, we use parallel scanning motion implemented in a twin robotic x-ray system. METHODS: We have measured and analyzed the modulation transfer function (MTF) for various combinations of scanning speed, x-ray tube voltage, pulse length, the nominal focal spot size as well as source-to-object distances. Moreover, we present a theoretical model which describes the system in terms of the MTF. The system was equipped with newly developed linear trajectory prototypes for slot scanning. The acquired images form the basis for a small-angle tomosynthesis reconstruction. In total, three different scanning speeds (27, 14, 8 cm/s), pulse lengths (1, 2, 4 ms), tube voltages (80, 100, 120 kV), two nominal focal spot sizes (0.6, 1.0), and three source-to-object distances (950, 1050, 1150 mm) were investigated. To determine the resolution capabilities, we measured the MTF for the given parameter space. The results were then used to design a filter that yields a desired resolution in the reconstructed image. In addition, we also measured the noise power spectrum (NPS) to show the influence of the aforementioned filters on the noise distribution. RESULTS: We have shown that the presented model is in good agreement with the performed measurements. Scanning speed and pulse width have an impact on the MTF in the scanning direction. Up to a travel distance of 0.3 mm during an x-ray pulse, an isotropic resolution can be achieved. Longer pulse width or higher scanning speed cause anisotropic resolution. Moreover, it is shown that none of the investigated parameters have an influence on the MTF perpendicular to the scanning direction (slot direction). The 10% MTF value ranges between 9 and 18 lp/cm in the scanning direction and about 18 lp/cm in slot direction. Tube voltage, nominal focal spot size as well as the source-to-object distance showed no major impact on the system MTF. In terms of the anisotropic resolution capabilities, we have shown that limiting the resolution in the slot direction to obtain isotropic resolution is possible yet at the cost of an inhomogeneous noise pattern. However, maintaining the resolution in slot direction will provide a better edge response and a more homogeneous noise texture at the cost of an inhomogeneous image resolution. CONCLUSIONS: We have demonstrated the feasibility of the slot-scanning technique using a twin-robotic x-ray system. Even the fastest scanning mode (27 cm/s) yields image resolution on a level that is sufficient for typical orthopedic examinations in terms of musculoskeletal (MSK) measurements. Moreover, it could be shown that the application of specifically designed target MTFs on two-dimensional x-ray images is feasible.


Assuntos
Intensificação de Imagem Radiográfica/métodos , Humanos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Razão Sinal-Ruído , Tronco/diagnóstico por imagem
13.
J Med Imaging (Bellingham) ; 6(3): 031406, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30746394

RESUMO

Assessment of breast density at the point of mammographic examination could lead to optimized breast cancer screening pathways. The onsite breast density information may offer guidance of when to recommend supplemental imaging for women in a screening program. A software application (Insight BD, Siemens Healthcare GmbH) for fast onsite quantification of volumetric breast density is evaluated. The accuracy of the method is assessed using breast tissue equivalent phantom experiments resulting in a mean absolute error of 3.84%. Reproducibility of measurement results is analyzed using 8427 exams in total, comparing for each exam (if available) the densities determined from left and right views, from cranio-caudal and medio-lateral oblique views, from full-field digital mammograms (FFDM) and digital breast tomosynthesis (DBT) data and from two subsequent exams of the same breast. Pearson correlation coefficients of 0.937, 0.926, 0.950, and 0.995 are obtained. Consistency of the results is demonstrated by evaluating the dependency of the breast density on women's age. Furthermore, the agreement between breast density categories computed by the software with those determined visually by 32 radiologists is shown by an overall percentage agreement of 69.5% for FFDM and by 64.6% for DBT data. These results demonstrate that the software delivers accurate, reproducible, and consistent measurements that agree well with the visual assessment of breast density by radiologists.

14.
Phys Med Biol ; 63(13): 135018, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29968576

RESUMO

Talbot-Lau x-ray imaging (TLXI) is an innovative and promising imaging technique providing information about the x-ray attenuation, scattering, and refraction features of objects. However, the method is susceptible to vibrations and system component imprecisions, which are inevitable in clinical and industrial practice. Those influences provoke grating displacements and hence errors in the acquired raw data, which cause moiré artifacts in the reconstructed images. We developed an enhanced reconstruction algorithm capable of compensating these errors by adjusting the grating positions and thus suppressing the occurrence of moiré artifacts. The algorithm has been developed with regard to a future application in medical practice. The capability of the algorithm is demonstrated on a medical data set of a human hand (post-mortem) acquired under clinical conditions using a pre-clinical TXLI prototype. It is shown that the algorithm reliably suppresses moiré artifacts, preserves image contrast, does not blur anatomical structures or prevent quantitative imaging, and is executable on low-dose data sets. In addition, the algorithm runs autonomously without the need of interaction or rework of the final results. In conclusion, the proposed reconstruction algorithm facilitates the use of TLXI in clinical practice and allows the exploitation of the method's full diagnostic potential in future medical applications.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Artefatos , Humanos , Processamento de Imagem Assistida por Computador/normas , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/normas
15.
Med Phys ; 44(9): e125-e137, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28061010

RESUMO

PURPOSE: Cone beam computed tomography (CBCT) suffers from a large amount of scatter, resulting in severe scatter artifacts in the reconstructions. Recently, a new scatter correction approach, called improved primary modulator scatter estimation (iPMSE), was introduced. That approach utilizes a primary modulator that is inserted between the X-ray source and the object. This modulation enables estimation of the scatter in the projection domain by optimizing an objective function with respect to the scatter estimate. Up to now the approach has not been implemented on a clinical angiography C-arm CT system. METHODS: In our work, the iPMSE method is transferred to a clinical C-arm CBCT. Additional processing steps are added in order to compensate for the C-arm scanner motion and the automatic X-ray tube current modulation. These challenges were overcome by establishing a reference modulator database and a block-matching algorithm. Experiments with phantom and experimental in vivo data were performed to evaluate the method. RESULTS: We show that scatter correction using primary modulation is possible on a clinical C-arm CBCT. Scatter artifacts in the reconstructions are reduced with the newly extended method. Compared to a scan with a narrow collimation, our approach showed superior results with an improvement of the contrast and the contrast-to-noise ratio for the phantom experiments. In vivo data are evaluated by comparing the results with a scan with a narrow collimation and with a constant scatter correction approach. CONCLUSIONS: Scatter correction using primary modulation is possible on a clinical CBCT by compensating for the scanner motion and the tube current modulation. Scatter artifacts could be reduced in the reconstructions of phantom scans and in experimental in vivo data.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Espalhamento de Radiação , Algoritmos , Angiografia , Artefatos , Humanos , Imagens de Fantasmas
16.
Med Phys ; 43(5): 2295, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27147341

RESUMO

PURPOSE: In the last decade, C-arm-based cone-beam CT became a widely used modality for intraoperative imaging. Typically a C-arm CT scan is performed using a circular or elliptical trajectory around a region of interest. Therefore, an angular range of at least 180° plus fan angle must be covered to ensure a completely sampled data set. However, mobile C-arms designed with a focus on classical 2D applications like fluoroscopy may be limited to a mechanical rotation range of less than 180° to improve handling and usability. The method proposed in this paper allows for the acquisition of a fully sampled data set with a system limited to a mechanical rotation range of at least 180° minus fan angle using a new trajectory design. This enables CT like 3D imaging with a wide range of C-arm devices which are mainly designed for 2D imaging. METHODS: The proposed trajectory extends the mechanical rotation range of the C-arm system with two additional linear shifts. Due to the divergent character of the fan-beam geometry, these two shifts lead to an additional angular range of half of the fan angle. Combining one shift at the beginning of the scan followed by a rotation and a second shift, the resulting rotate-plus-shift trajectory enables the acquisition of a completely sampled data set using only 180° minus fan angle of rotation. The shifts can be performed using, e.g., the two orthogonal positioning axes of a fully motorized C-arm system. The trajectory was evaluated in phantom and cadaver examinations using two prototype C-arm systems. RESULTS: The proposed trajectory leads to reconstructions without limited angle artifacts. Compared to the limited angle reconstructions of 180° minus fan angle, image quality increased dramatically. Details in the rotate-plus-shift reconstructions were clearly depicted, whereas they are dominated by artifacts in the limited angle scan. CONCLUSIONS: The method proposed here employs 3D imaging using C-arms with less than 180° rotation range adding full 3D functionality to a C-arm device retaining both handling comfort and the usability of 2D imaging. This method has a clear potential for clinical use especially to meet the increasing demand for an intraoperative 3D imaging.


Assuntos
Tomografia Computadorizada de Feixe Cônico/instrumentação , Tomografia Computadorizada de Feixe Cônico/métodos , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Artefatos , Parafusos Ósseos , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/cirurgia , Desenho de Equipamento , Cabeça/diagnóstico por imagem , Humanos , Modelos Anatômicos , Procedimentos Ortopédicos , Imagens de Fantasmas , Rotação , Cirurgia Assistida por Computador/instrumentação , Cirurgia Assistida por Computador/métodos
17.
Med Phys ; 43(5): 2303, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27147342

RESUMO

PURPOSE: CT reconstruction requires an angular coverage of 180° or more for each point within the field of measurement. Thus, common trajectories use a 180° plus fan angle rotation. This is sometimes combined with a translation of the rotational isocenter in order to achieve circular trajectories with an isocenter different from the mechanical rotation center or elliptical trajectories. Rays measured redundantly are appropriately weighted. In case of an angular coverage smaller than 180°, the reconstructed images suffer from limited angle artifacts. In mechanical constructions with a rotation range limited to less than 180° plus fan angle, the angular coverage can be extended by adding one or two shifts to the rotational motion. If the missing angle is less than the fan angle, the shifts can completely compensate for the limited rotational capabilities. METHODS: The authors give weight functions that can be viewed as generalized Parker weights, which can be applied to the raw data before image reconstruction. Raw data of Forbild phantoms using the rotate-plus-shift trajectory are simulated with the geometry of a typical mobile flat detector-based C-arm system. Filtered backprojection (FBP) reconstructions using the new redundancy weight are performed and compared to FBP reconstructions of limited angle scans as well as short-scan reference trajectories using Parker weight. RESULTS: The new weighting method is exact in 2D, and for 3D Feldkamp-type reconstructions, it is exact in the mid-plane. The proposed weight shows a mathematically exact match with Parker weight for conventional short-scan trajectories. Reconstructions of rotate-plus-shift trajectories using the new weight do not suffer from limited angle artifacts, whereas scans limited to less than 180° without shift show prominent artifacts. Image noise in rotate-plus-shift scans is comparable to that of corresponding short scans. CONCLUSIONS: The new weight function enables the straightforward reconstruction using filtered backprojection of data acquired with the rotate-plus-shift C-arm trajectory and a large variety of other advanced trajectories.


Assuntos
Tomografia Computadorizada de Feixe Cônico/instrumentação , Tomografia Computadorizada de Feixe Cônico/métodos , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Artefatos , Simulação por Computador , Desenho de Equipamento , Cabeça/diagnóstico por imagem , Humanos , Modelos Anatômicos , Imagens de Fantasmas , Rotação
18.
Med Phys ; 42(1): 469-78, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25563286

RESUMO

PURPOSE: Scattered radiation is one of the major problems facing image quality in flat detector cone-beam computed tomography (CBCT). Previously, a new scatter estimation and correction method using primary beam modulation has been proposed. The original image processing technique used a frequency-domain-based analysis, which proved to be sensitive to the accuracy of the modulator pattern both spatially and in amplitude as well as to the frequency of the modulation pattern. In addition, it cannot account for penumbra effects that occur, for example, due to the finite focal spot size and the scatter estimate can be degraded by high-frequency components of the primary image. METHODS: In this paper, the authors present a new way to estimate the scatter using primary modulation. It is less sensitive to modulator nonidealities and most importantly can handle arbitrary modulator shapes and changes in modulator attenuation. The main idea is that the scatter estimation can be expressed as an optimization problem, which yields a separation of the scatter and the primary image. The method is evaluated using simulated and experimental CBCT data. The scattering properties of the modulator itself are analyzed using a Monte Carlo simulation. RESULTS: All reconstructions show strong improvements of image quality. To quantify the results, all images are compared to reference images (ideal simulations and collimated scans). CONCLUSIONS: The proposed modulator-based scatter reduction algorithm may open the field of flat detector-based imaging to become a quantitative modality. This may have significant impact on C-arm imaging and on image-guided radiation therapy.


Assuntos
Algoritmos , Tomografia Computadorizada de Feixe Cônico/métodos , Espalhamento de Radiação , Simulação por Computador , Tomografia Computadorizada de Feixe Cônico/instrumentação , Cabeça/diagnóstico por imagem , Humanos , Pulmão/diagnóstico por imagem , Modelos Teóricos , Método de Monte Carlo , Imagens de Fantasmas
19.
Med Phys ; 41(2): 021906, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24506627

RESUMO

PURPOSE: Image quality in computed tomography (CT) often suffers from artifacts which may reduce the diagnostic value of the image. In many cases, these artifacts result from missing or corrupt regions in the projection data, e.g., in the case of metal, truncation, and limited angle artifacts. The authors propose a generalized correction method for different kinds of artifacts resulting from missing or corrupt data by making use of available prior knowledge to perform data completion. METHODS: The proposed prior-based artifact correction (PBAC) method requires prior knowledge in form of a planning CT of the same patient or in form of a CT scan of a different patient showing the same body region. In both cases, the prior image is registered to the patient image using a deformable transformation. The registered prior is forward projected and data completion of the patient projections is performed using smooth sinogram inpainting. The obtained projection data are used to reconstruct the corrected image. RESULTS: The authors investigate metal and truncation artifacts in patient data sets acquired with a clinical CT and limited angle artifacts in an anthropomorphic head phantom data set acquired with a gantry-based flat detector CT device. In all cases, the corrected images obtained by PBAC are nearly artifact-free. Compared to conventional correction methods, PBAC achieves better artifact suppression while preserving the patient-specific anatomy at the same time. Further, the authors show that prominent anatomical details in the prior image seem to have only minor impact on the correction result. CONCLUSIONS: The results show that PBAC has the potential to effectively correct for metal, truncation, and limited angle artifacts if adequate prior data are available. Since the proposed method makes use of a generalized algorithm, PBAC may also be applicable to other artifacts resulting from missing or corrupt data.


Assuntos
Artefatos , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Humanos , Metais , Imagens de Fantasmas
20.
Phys Med Biol ; 57(6): 1517-25, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22391045

RESUMO

Temporal-correlated image reconstruction, also known as 4D CT image reconstruction, is a big challenge in computed tomography. The reasons for incorporating the temporal domain into the reconstruction are motions of the scanned object, which would otherwise lead to motion artifacts. The standard method for 4D CT image reconstruction is extracting single motion phases and reconstructing them separately. These reconstructions can suffer from undersampling artifacts due to the low number of used projections in each phase. There are different iterative methods which try to incorporate some a priori knowledge to compensate for these artifacts. In this paper we want to follow this strategy. The cost function we use is a higher dimensional cost function which accounts for the sparseness of the measured signal in the spatial and temporal directions. This leads to the definition of a higher dimensional total variation. The method is validated using in vivo cardiac micro-CT mouse data. Additionally, we compare the results to phase-correlated reconstructions using the FDK algorithm and a total variation constrained reconstruction, where the total variation term is only defined in the spatial domain. The reconstructed datasets show strong improvements in terms of artifact reduction and low-contrast resolution compared to other methods. Thereby the temporal resolution of the reconstructed signal is not affected.


Assuntos
Tomografia Computadorizada Quadridimensional/estatística & dados numéricos , Algoritmos , Animais , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Camundongos , Modelos Estatísticos , Microtomografia por Raio-X/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA