Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Viruses ; 16(3)2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38543736

RESUMO

The COVID-19 pandemic has profoundly impacted global health, leading to extensive research focused on developing strategies to enhance outbreak response and mitigate the disease's severity. In the aftermath of the pandemic, attention has shifted towards understanding and addressing long-term health implications, particularly in individuals experiencing persistent symptoms, known as long COVID. Research into potential interventions to alleviate long COVID symptoms has intensified, with a focus on strategies to support immune function and mitigate inflammation. One area of interest is the gut microbiota, which plays a crucial role in regulating immune responses and maintaining overall health. Prebiotics and probiotics, known for their ability to modulate the gut microbiota, have emerged as potential therapeutic agents in bolstering immune function and reducing inflammation. This review delves into the intricate relationship between long COVID, the gut microbiota, and immune function, with a specific focus on the role of prebiotics and probiotics. We examine the immune response to long COVID, emphasizing the importance of inflammation and immune regulation in the persistence of symptoms. The potential of probiotics in modulating immune responses, including their mechanisms in combating viral infections such as COVID-19, is discussed in detail. Clinical evidence supporting the use of probiotics in managing long COVID symptoms is summarized, highlighting their role as adjunctive therapy in addressing various aspects of SARS-CoV-2 infection and its aftermath.


Assuntos
COVID-19 , Probióticos , Humanos , Prebióticos , COVID-19/terapia , Síndrome de COVID-19 Pós-Aguda , Pandemias , SARS-CoV-2 , Probióticos/uso terapêutico , Inflamação
2.
Genes (Basel) ; 15(7)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39062687

RESUMO

Emerging infectious diseases (EIDs) are newly emerging and reemerging infectious diseases. The National Institute of Allergy and Infectious Diseases identifies the following as emerging infectious diseases: SARS, MERS, COVID-19, influenza, fungal diseases, plague, schistosomiasis, smallpox, tick-borne diseases, and West Nile fever. The factors that should be taken into consideration are the genetic adaptation of microbial agents and the characteristics of the human host or environment. The new approach to identifying new possible pathogens will have to go through the One Health approach and omics integration data, which are capable of identifying high-priority microorganisms in a short period of time. New bioinformatics technologies enable global integration and sharing of surveillance data for rapid public health decision-making to detect and prevent epidemics and pandemics, ensuring timely response and effective prevention measures. Machine learning tools are being more frequently utilized in the realm of infectious diseases to predict sepsis in patients, diagnose infectious diseases early, and forecast the effectiveness of treatment or the appropriate choice of antibiotic regimen based on clinical data. We will discuss emerging microorganisms, omics techniques applied to infectious diseases, new computational solutions to evaluate biomarkers, and innovative tools that are useful for integrating omics data and electronic medical records data for the clinical management of emerging infectious diseases.


Assuntos
Doenças Transmissíveis Emergentes , Humanos , Doenças Transmissíveis Emergentes/microbiologia , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/prevenção & controle , Saúde Única , Doenças Transmissíveis/microbiologia , COVID-19/epidemiologia , COVID-19/virologia , Aprendizado de Máquina , Biologia Computacional/métodos
3.
Intensive Care Med Exp ; 12(1): 40, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649512

RESUMO

OBJECTIVES: To assess the incidences of Herpes Simplex-1 and 2 (HSV-1, HSV-2), Cytomegalovirus (CMV), Epstein-Barr Virus (EBV) reactivations in critically ill COVID-19 patients. To determine the association between viral reactivation and in-hospital mortality, Intensive Care Unit Bloodstream infection (ICU-BSI), ventilator-associated pneumonia (VAP). DESIGN: Observational retrospective cohort study. SETTING: COVID-19 Intensive Care Unit. PATIENTS: From November 2020 to May 2021, one hundred and twenty patients with COVID-19 severe pneumonia were enrolled and tested for HSV-1, HSV-2, CMV and EBV at the admission in ICU and weekly until discharge or death. The presence of VAP and ICU-BSI was evaluated according to clinical judgement and specific diagnostic criteria. MEASUREMENTS AND MAIN RESULTS: One hundred and twenty patients were enrolled. Multiple reactivations occurred in 75/120 (63%) patients, single reactivation in 27/120 patients (23%). The most reactivated Herpesvirus was EBV, found in 78/120 (65%) patients. The multivariate analysis demonstrated that viral reactivation is a strong independent risk factor for in-hospital mortality (OR = 2.46, 95% CI 1.02-5.89), ICU-BSI (OR = 2.37, 95% CI 1.06-5.29) and VAP (OR = 2.64, 95% CI 1.20-5.82). CONCLUSIONS: Human Herpesviruses reactivations in critically ill patients with COVID-19 severe Pneumonia are associated with mortality and with a higher risk to develop both VAP and ICU-BSI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA