RESUMO
Sorghum [Sorghum bicolor (L.) Moench] has been receiving attention as a feedstock for lignocellulose biomass energy. During the combustion process, the ash containing silicon (Si) can be produced, which causes problems in furnace maintenance. Hence, lowering Si content in the plants is crucial. Nevertheless, limiting Si supply to crops is difficult in practice because Si is abundant in soil. Previously, a Si uptake transporter (SbLsi1) has been identified, and the Si-depleted mutant has also been generated in the model sorghum variety BTx623. In this study, we aim to investigate the change induced by the mutation of SbLsi1 on the accumulation and the structure of lignin in cell walls. Through chemical and NMR analyses, we demonstrated that the lsi1 mutation resulted in a significant increase in lignin accumulation levels as well as a significant reduction in Si content. At least some of the modification was induced by transcriptional changes, as suggested by the upregulation of phenylpropanoid biosynthesis-related genes in the mutant plants. These findings derived from the model variety would be useful for the future development of practical cultivars with high biomass and less Si content for bioenergy applications.
RESUMO
Sorghum has been recognized as a promising energy crop. The composition and structure of lignin in the cell wall are important factors that affect the quality of plant biomass as a bioenergy feedstock. Silicon (Si) supply may affect the lignin content and structure, as both Si and lignin are possibly involved in plant mechanical strength. However, our understanding regarding the interaction between Si and lignin in sorghum is limited. Therefore, in this study, we analyzed the lignin in the cell walls of sorghum seedlings cultured hydroponically with or without Si supplementation. Limiting the Si supply significantly increased the thioglycolic acid lignin content and thioacidolysis-derived syringyl/guaiacyl monomer ratio. At least part of the modification may be attributable to the change in gene expression, as suggested by the upregulation of phenylpropanoid biosynthesis-related genes under -Si conditions. The cell walls of the -Si plants had a higher mechanical strength and calorific value than those of the +Si plants. These results provide some insights into the enhancement of the value of sorghum biomass as a feedstock for energy production by limiting Si uptake.
Assuntos
Sorghum , Biomassa , Parede Celular/metabolismo , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Plântula/metabolismo , Silício/metabolismo , Sorghum/genéticaRESUMO
Sorghum [Sorghum bicolor (L.) Moench] has been gaining attention as a feedstock for biomass energy production. While it is obvious that nitrogen (N) supply significantly affects sorghum growth and biomass accumulation, our knowledge is still limited regarding the effect of N on the biomass quality of sorghum, such as the contents and structures of lignin and other cell wall components. Therefore, in this study, we investigated the effects of N supply on the structure and composition of sorghum cell walls. The cell walls of hydroponically cultured sorghum seedlings grown under sufficient or deficient N conditions were analyzed using chemical, two-dimensional nuclear magnetic resonance, gene expression, and immunohistochemical methods. We found that the level of N supply considerably affected the cell wall structure and composition of sorghum seedlings. Limitation of N led to a decrease in the syringyl/guaiacyl lignin unit ratio and an increase in the amount and alteration of tissue distribution of several hemicelluloses, including mixed linkage (1 â 3), (1 â 4)-ß-D-glucan, and arabinoxylan. At least some of these cell wall alterations could be associated with changes in gene expression. Nitrogen status is thus one of the factors affecting the cell wall properties of sorghum seedlings.