Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(10): 2521-2535.e21, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38697107

RESUMO

Cancer immunotherapy remains limited by poor antigenicity and a regulatory tumor microenvironment (TME). Here, we create "onion-like" multi-lamellar RNA lipid particle aggregates (LPAs) to substantially enhance the payload packaging and immunogenicity of tumor mRNA antigens. Unlike current mRNA vaccine designs that rely on payload packaging into nanoparticle cores for Toll-like receptor engagement in immune cells, systemically administered RNA-LPAs activate RIG-I in stromal cells, eliciting massive cytokine/chemokine response and dendritic cell/lymphocyte trafficking that provokes cancer immunogenicity and mediates rejection of both early- and late-stage murine tumor models. In client-owned canines with terminal gliomas, RNA-LPAs improved survivorship and reprogrammed the TME, which became "hot" within days of a single infusion. In a first-in-human trial, RNA-LPAs elicited rapid cytokine/chemokine release, immune activation/trafficking, tissue-confirmed pseudoprogression, and glioma-specific immune responses in glioblastoma patients. These data support RNA-LPAs as a new technology that simultaneously reprograms the TME while eliciting rapid and enduring cancer immunotherapy.


Assuntos
Imunoterapia , Lipídeos , RNA , Microambiente Tumoral , Animais , Cães , Feminino , Humanos , Camundongos , Antígenos de Neoplasias/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Linhagem Celular Tumoral , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Glioblastoma/terapia , Glioblastoma/imunologia , Glioma/terapia , Glioma/imunologia , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Neoplasias/terapia , Neoplasias/imunologia , RNA/química , RNA/uso terapêutico , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Lipídeos/química
2.
Microbiol Immunol ; 66(5): 201-211, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35150167

RESUMO

Adoptive T-cell therapies have been successfully used as prophylaxis or treatment for immunocompromised patients at risk of viral infections or advanced cancers. Unfortunately, for some refractory cancers, they have failed. To overcome this, checkpoint inhibitors are used to rescue immune antitumor responses. We hypothesized that in vitro checkpoint blockade during T-cell stimulation and expansion with messenger RNA (mRNA)-pulsed DCs may enhance the activity of antigen-specific T cells and improve the efficacy of adoptive cellular therapy platforms. Human peripheral blood mononuclear cells were isolated from cytomegalovirus (CMV)-seropositive donors to generate DCs. These were pulsed with CMV matrix phosphoprotein 65 (CMVpp65)-mRNA to educate T cells in coculture for 15 days. Three checkpoint blockade conditions were evaluated (anti-PD1, anti-Tim3, and anti-PD1 + Tim3). IL-2 and antibodies blockades were added every 3 days. Immunophenotyping was performed on Day 0 and Day 15. Polyfunctional antigen-specific responses were evaluated upon rechallenge with CMVpp65 peptides. CMVpp65-activated CD8+ T cells upregulate Lag3 and Tim3 (P ≤ 0.0001). Tim3 antibody blockade alone or in combination led to a significant upregulation of Lag3 expression on CD8+ pp65Tetramer+ central memory, effector memory, and terminal effector memory cells re-expressing RA (TEMRA) T cells. This latter T-cell subset uniquely maintains double-positive Tim3/Lag3 expression after checkpoint blockade. By contrast, PD1 blockade had minimal effects on Tim3 or Lag3 expression. In addition, IFN-γ secretion was reduced in T cells treated with Tim3 blockade in a dose-dependent manner (P = 0.004). In this study, we have identified a potential activating component of Tim3 and linkage between Tim3 and Lag3 signaling upon blocking the Tim3 axis during T-cell-antigen-presenting cell interactions that should be considered when targeting immune checkpoints for clinical use.


Assuntos
Infecções por Citomegalovirus , Receptor Celular 2 do Vírus da Hepatite A , Linfócitos T CD8-Positivos , Receptor Celular 2 do Vírus da Hepatite A/genética , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Leucócitos Mononucleares/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , RNA Mensageiro
3.
Nucleic Acids Res ; 45(20): 11700-11710, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-28977641

RESUMO

Newly synthesized histones H3 and H4 undergo a cascade of maturation steps to achieve proper folding and to establish post-translational modifications prior to chromatin deposition. Acetylation of H4 on lysines 5 and 12 by the HAT1 acetyltransferase is observed late in the histone maturation cascade. A key question is to understand how to establish and regulate the distinct timing of sequential modifications and their biological significance. Here, we perform proteomic analysis of the newly synthesized histone H4 complex at the earliest time point in the cascade. In addition to known binding partners Hsp90 and Hsp70, we also identify for the first time two subunits of the histone acetyltransferase inhibitor complex (INHAT): PP32 and SET/TAF-Iß. We show that both proteins function to prevent HAT1-mediated H4 acetylation in vitro. When PP32 and SET/TAF-Iß protein levels are down-regulated in vivo, we detect hyperacetylation on lysines 5 and 12 and other H4 lysine residues. Notably, aberrantly acetylated H4 is less stable and this reduces the interaction with Hsp90. As a consequence, PP32 and SET/TAF-Iß depleted cells show an S-phase arrest. Our data demonstrate a novel function of PP32 and SET/TAF-Iß and provide new insight into the mechanisms regulating acetylation of newly synthesized histone H4.


Assuntos
Histona Acetiltransferases/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Western Blotting , Proteínas de Ligação a DNA , Proteínas de Choque Térmico HSP90/metabolismo , Células HeLa , Chaperonas de Histonas/genética , Histonas/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lisina/genética , Lisina/metabolismo , Espectrometria de Massas , Proteínas Nucleares , Ligação Proteica , Proteômica , Interferência de RNA , Proteínas de Ligação a RNA , Fatores de Transcrição/genética
4.
Pituitary ; 20(6): 702-708, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28766078

RESUMO

INTRODUCTION: Double adenomas in the pituitary gland are a rare occurrence. The ability to cure a hormone-producing adenoma with surgery is dependent on the ability to identify and completely remove the correct adenoma. The relative frequency of each subtype of hormone-secreting adenomas confirmed with magnetic resonance image (MRI), surgery and immunohistochemistry is not defined. METHODS: Following PRISMA guidelines, we performed a systematic review of PubMed Central, Google Scholar, Scopus Database, Cochrane database and Science Research, using the key-words: "double pituitary adenomas", "multiple pituitary adenomas" and only papers where multiple or truly separate double pituitary adenomas were identified pre-surgically by MRI and/or confirmed by pathology/immunohistochemistry staining were included. RESULTS: We reviewed papers from 1975 to 2016 and found 17 cases with two pituitary adenomas and 1 with three pituitary adenomas. The ages ranged from 22 to 67 years old, and there were twelve females and five males. Immunohistochemical staining showed that the most common double pituitary adenomas were growth hormone (GH)- followed by adrenocorticotropic (ACTH)-secreting. CONCLUSION: Double pituitary adenomas are rare but most commonly found with GH- or ACTH-producing tumors. It is critical to remove all identified possible adenomas to achieve biochemical cure and clinicians should have heightened sensitivity in patients with acromegaly or Cushing's Disease.


Assuntos
Adenoma Hipofisário Secretor de ACT/metabolismo , Hormônio do Crescimento Humano/metabolismo , Neoplasias Hipofisárias/metabolismo , Feminino , Humanos , Masculino
5.
Gen Comp Endocrinol ; 253: 33-43, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28842215

RESUMO

Crustacean hyperglycemic hormones (CHHs) are multifunctional neuropeptides ubiquitous in crustaceans. In Litopenaeus vannamei, CHH-B2 is a CHH eyestalk isoform whose expression has been shown to vary with enviromental conditions, suggesting its relevance for ecophysiological performance of shrimp, controlling processes related to metabolism and osmo-ionic regulation. To study the involvement of CHH-B2 in these processes, we cloned and expressed a recombinant version with a free C-terminal glycine (rCHH-B2-Gly) in the methylotrophic yeast Pichia pastoris. The rCHH-B2-Gly peptide secreted to the culture medium was purified by RP-HPLC and used for in vivo glucose, triglyceride, and osmoregulation dose-response analyses with juvenile shrimp. The peptide was also amidated at the C-terminus using an α-amidating enzyme to produce rCHH-B2-amide. The shrimp showed a dose-dependent effect of rCHH-B2-Gly to hemolymph glucose and triglyceride levels, inducing maximal increases by injecting 500 and 1000pmol of hormone, respectively. Additionally, 10pmol of hormone was sufficient to reduce the hypo-osmoregulatory capacity of shrimp at 35‰. These findings suggest that CHH-B2 has regulatory roles in carbohydrate and lipid metabolism, and a potential involvement in osmoregulation of L. vannamei. Injection of 100pmol of rCHH-B2-amide increased glucose and triglyceride levels by 15 and 28%, respectively in comparison with rCHH-B2-Gly, suggesting an important role for the C-terminal amidation. Additionally, an in silico structural analysis done with the CHH-B1 and rCHH-B2-Gly peptides suggests that the C-terminal region may be relevant for the activity of the L. vannamei isoforms and explain the functional divergence from other crustacean CHH/CHH-like peptides.


Assuntos
Proteínas de Artrópodes/genética , Hormônios de Invertebrado/genética , Proteínas do Tecido Nervoso/genética , Osmorregulação , Penaeidae/metabolismo , Amidas/química , Animais , Proteínas de Artrópodes/metabolismo , Sequência de Bases , Bioensaio , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Clonagem Molecular , Simulação por Computador , Vetores Genéticos/metabolismo , Hiperglicemia/metabolismo , Hormônios de Invertebrado/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
6.
Animals (Basel) ; 14(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891570

RESUMO

Although the presence of female contact sex pheromones in P. vannamei has been hypothesized, to date its existence has not been proven. To gather more evidence of their existence, cuticular liposoluble extracts were obtained from the following samples of adult females to be used as the experimental treatments: (1) ventral exoskeleton of immature female (VI), (2) dorsolateral exoskeleton of immature female (DI), (3) ventral exoskeleton of mature female (VM), and (4) dorsolateral exoskeleton of mature female (DM). Polyvinyl chloride tubes (artificial females; AF) were coated with each extract and the behavior displayed by sexually mature males in contact with the AF was recorded and classified as follows: 0 = no response; 1 = contact; 2 = pushing; and 3 = prolonged contact (≥10 s). To test the hypothesis that the extracts collected from the ventral portion of the abdomen exoskeleton have a higher effect on the behavior of males than the extracts collected from the dorsolateral portion of the abdomen exoskeleton, the experiment was divided into two bioassays: Bioassay I (VI vs. DI) and Bioassay II (VM vs. DM). In each bioassay, all experimental treatments were significantly different (p > 0.05) from the CTL group (AF coated with hexane). Notably, the pushing behavior was significantly higher (p < 0.05) in the VI treatment compared to the CTL and DI treatment. These results provide evidence of the existence of contact female sex pheromones with sexual recognition function located primarily in the ventral portion of the abdomen exoskeleton of P. vannamei.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38224831

RESUMO

Salinity and temperature influence growth, survival, and reproduction of crustacean species such as Penaeus vannamei where Na +/K+-ATPase plays a key role in maintaining osmotic homeostasis in different salinity conditions. This ability is suggested to be mediated by other proteins including neuropeptides such as the crustacean hyperglycemic hormones (CHHs), and heat shock proteins (HSPs). The mRNA expression of Na+/K+-ATPase, HSP60, HSP70, CHH-A, and CHH-B1, was analyzed by qPCR in shrimp acclimated to different salinities (10, 26, and 40 PSU) and temperature conditions (20, 23, 26, 29, and 32 °C) to evaluate their uses as molecular stress biomarkers. The results showed that the hemolymph osmoregulatory capacity in shrimp changed with exposure to the different salinities. From 26 to 32 °C the Na+/K+-ATPase expression increased significantly at 10 PSU relative to shrimp acclimated at 26 PSU and at 20 °C increased at similar values independently of salinity. The highest HSP expression levels were obtained by HSP70 at 20 °C, suggesting a role in protecting proteins such as Na+/K+ -ATPase under low-temperature and salinity conditions. CHH-A was not expressed in the gill under any condition, but CHH-B1 showed the highest expression at the lowest temperatures and salinities, suggesting its participation in the Na+/K+-ATPase induction. Since Na+/K+-ATPase, HSPs, and CHHs seem to participate in maintaining the osmo-ionic balance and homeostasis in P. vannamei, their expression levels may be used as a stress biomarkers to monitor marine crustacean health status when acclimated in low salinity and temperature conditions.


Assuntos
Penaeidae , Animais , Penaeidae/metabolismo , Salinidade , Adenosina Trifosfatases/metabolismo , Temperatura , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Brânquias/metabolismo
8.
J Hematol Oncol ; 17(1): 4, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191498

RESUMO

Myelodysplastic neoplasms (MDS) define clonal hematopoietic malignancies characterized by heterogeneous mutational and clinical spectra typically seen in the elderly. Curative treatment entails allogeneic hematopoietic stem cell transplant, which is often not a feasible option due to older age and significant comorbidities. Immunotherapy has the cytotoxic capacity to elicit tumor-specific killing with long-term immunological memory. While a number of platforms have emerged, therapeutic vaccination presents as an appealing strategy for MDS given its promising safety profile and amenability for commercialization. Several preclinical and clinical trials have investigated the efficacy of vaccines in MDS; these include peptide vaccines targeting tumor antigens, whole cell-based vaccines and dendritic cell-based vaccines. These therapeutic vaccines have shown acceptable safety profiles, but consistent clinical responses remain elusive despite robust immunological reactions. Combining vaccines with immunotherapeutic agents holds promise and requires further investigation. Herein, we highlight therapeutic vaccine trials while reviewing challenges and future directions of successful vaccination strategies in MDS.


Assuntos
Neoplasias Hematológicas , Síndromes Mielodisplásicas , Vacinas , Idoso , Humanos , Síndromes Mielodisplásicas/terapia , Imunoterapia , Vacinação
9.
Genome Med ; 16(1): 17, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38268001

RESUMO

BACKGROUND: Despite advancements in the successful use of immunotherapy in treating a variety of solid tumors, applications in treating brain tumors have lagged considerably. This is due, at least in part, to the lack of well-characterized antigens expressed within brain tumors that can mediate tumor rejection; the low mutational burden of these tumors that limits the abundance of targetable neoantigens; and the immunologically "cold" tumor microenvironment that hampers the generation of sustained and productive immunologic responses. The field of mRNA-based therapeutics has experienced a boon following the universal approval of COVID-19 mRNA vaccines. mRNA-based immunotherapeutics have also garnered widespread interest for their potential to revolutionize cancer treatment. In this study, we developed a novel and scalable approach for the production of personalized mRNA-based therapeutics that target multiple tumor rejection antigens in a single therapy for the treatment of refractory brain tumors. METHODS: Tumor-specific neoantigens and aberrantly overexpressed tumor-associated antigens were identified for glioblastoma and medulloblastoma tumors using our cancer immunogenomics pipeline called Open Reading Frame Antigen Network (O.R.A.N). Personalized tumor antigen-specific mRNA vaccine was developed for each individual tumor model using selective gene capture and enrichment strategy. The immunogenicity and efficacy of the personalized mRNA vaccines was evaluated in combination with anti-PD-1 immune checkpoint blockade therapy or adoptive cellular therapy with ex vivo expanded tumor antigen-specific lymphocytes in highly aggressive murine GBM models. RESULTS: Our results demonstrate the effectiveness of the antigen-specific mRNA vaccines in eliciting robust anti-tumor immune responses in GBM hosts. Our findings substantiate an increase in tumor-infiltrating lymphocytes characterized by enhanced effector function, both intratumorally and systemically, after antigen-specific mRNA-directed immunotherapy, resulting in a favorable shift in the tumor microenvironment from immunologically cold to hot. Capacity to generate personalized mRNA vaccines targeting human GBM antigens was also demonstrated. CONCLUSIONS: We have established a personalized and customizable mRNA-therapeutic approach that effectively targets a plurality of tumor antigens and demonstrated potent anti-tumor response in preclinical brain tumor models. This platform mRNA technology uniquely addresses the challenge of tumor heterogeneity and low antigen burden, two key deficiencies in targeting the classically immunotherapy-resistant CNS malignancies, and possibly other cold tumor types.


Assuntos
Neoplasias Encefálicas , Vacinas Anticâncer , Neoplasias Cerebelares , Meduloblastoma , Humanos , Animais , Camundongos , Vacinas de mRNA , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Vacinas Anticâncer/genética , Antígenos de Neoplasias/genética , Microambiente Tumoral/genética
10.
Mol Ther Methods Clin Dev ; 32(1): 101192, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38327807

RESUMO

The COVID-19 pandemic has caused about seven million deaths worldwide. Preventative vaccines have been developed including Spike gp mRNA-based vaccines that provide protection to immunocompetent patients. However, patients with primary immunodeficiencies, patients with cancer, or hematopoietic stem cell transplant recipients are not able to mount robust immune responses against current vaccine approaches. We propose to target structural SARS-CoV-2 antigens (i.e., Spike gp, Membrane, Nucleocapsid, and Envelope) using circulating human antigen-presenting cells electroporated with full length SARS-CoV-2 structural protein-encoding mRNAs to activate and expand specific T cells. Based on the Th1-type cytokine and cytolytic enzyme secretion upon antigen rechallenge, we were able to generate SARS-CoV-2 specific T cells in up to 70% of unexposed unvaccinated healthy donors (HDs) after 3 subsequent stimulations and in 100% of recovered patients (RPs) after 2 stimulations. By means of SARS-CoV-2 specific TCRß repertoire analysis, T cells specific to Spike gp-derived hypomutated regions were identified in HDs and RPs despite viral genomic evolution. Hence, we demonstrated that SARS-CoV-2 mRNA-loaded antigen-presenting cells are effective activating and expanding COVID19-specific T cells. This approach represents an alternative to patients who are not able to mount adaptive immune responses to current COVID-19 vaccines with potential protection across new variants that have conserved genetic regions.

11.
World Neurosurg ; 182: e792-e797, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38101536

RESUMO

INTRODUCTION: Central to neurosurgical care, neurosurgical education is particularly needed in low- and middle-income countries (LMICs), where opportunities for neurosurgical training are limited due to social and economic constraints and an inadequate workforce. The present paper aims (1) to evaluate the validity and usability of a cadaver-free hybrid system in the context of LMICs and (2) to report their learning needs and whether the courses meet those needs via a comprehensive survey. METHODS: From April to November 2021, a non-profit initiative consisting of a series of innovative cadaver-free courses based on virtual and practical training was organized. This project emerged from a collaboration between the Young Neurosurgeons Forum of the World Federation of Neurological Societies (WFNS), the NIHR Global Health Research Group on Neurotrauma, and UpSurgeOn, an Italian hi-tech company specialized in simulation technologies, creator of the UpSurgeOn Box, a hyper-realistic simulator of cranial approaches fused with augmented reality. Over that period, 11 cadaver-free courses were held in LMICs using remote hands-on Box simulators. RESULTS: One hundred sixty-eight participants completed an online survey after course completion of the course. The anatomical accuracy of simulators was overall rated high by the participant. The simulator provided a challenging but manageable learning curve, and 86% of participants found the Box to be very intuitive to use. When asked if the sequence of mental training (app), hybrid training (Augmented Reality), and manual training (the Box) was an effective method of training to fill the gap between theoretical knowledge and practice on a real patient/cadaver, 83% of participants agreed. Overall, the hands-on activities on the simulators have been satisfactory, as well as the integration between physical and digital simulation. CONCLUSIONS: This project demonstrated that a cadaver-free hybrid (virtual/hands-on) training system could potentially participate in accelerating the learning curve of neurosurgical residents, especially in the setting of limited training possibilities such as LMICs, which were only worsened during the COVID-19 pandemic.


Assuntos
Países em Desenvolvimento , Pandemias , Humanos , Neurocirurgiões , Simulação por Computador , Curva de Aprendizado
12.
J Pers Med ; 13(7)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37511759

RESUMO

Different techniques have been proposed to measure antibiotic levels within the lung parenchyma; however, their use is limited because they are invasive and associated with adverse effects. We explore whether beta-lactam antibiotics could be measured in exhaled breath condensate collected from heat and moisture exchange filters (HMEFs) and correlated with the concentration of antibiotics measured from bronchoalveolar lavage (BAL). We designed an observational study in patients undergoing mechanical ventilation, which required a BAL to confirm or discard the diagnosis of pneumonia. We measured and correlated the concentration of beta-lactam antibiotics in plasma, epithelial lining fluid (ELF), and exhaled breath condensate collected from HMEFs. We studied 12 patients, and we detected the presence of antibiotics in plasma, ELF, and HMEFs from every patient studied. The concentrations of antibiotics were very heterogeneous over the population studied. The mean antibiotic concentration was 293.5 (715) ng/mL in plasma, 12.3 (31) ng/mL in ELF, and 0.5 (0.9) ng/mL in HMEF. We found no significant correlation between the concentration of antibiotics in plasma and ELF (R2 = 0.02, p = 0.64), between plasma and HMEF (R2 = 0.02, p = 0.63), or between ELF and HMEF (R2 = 0.02, p = 0.66). We conclude that beta-lactam antibiotics can be detected and measured from the exhaled breath condensate accumulated in the HMEF from mechanically ventilated patients. However, no correlations were observed between the antibiotic concentrations in HMEF with either plasma or ELF.

13.
World Neurosurg ; 176: e190-e199, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37187347

RESUMO

BACKGROUND: Barriers to neurosurgery training and practice in Latin American and Caribbean countries (LACs) have been scarcely documented. The World Federation of Neurosurgical Societies Young Neurosurgeons Forum survey sought to identify young neurosurgeons' needs, roles, and challenges. We present the results focused on Latin America and the Caribbean. METHODS: In this cross-sectional study, we analyzed the Young Neurosurgeons Forum survey responses from LACs, following online survey dissemination through personal contacts, social media, and neurosurgical societies' e-mailing lists between April and November 2018. Data analysis was performed using Jamovi version 2.0 and STATA version 16. RESULTS: There were 91 respondents from LACs. Three (3.3%) respondents practiced in high-income countries, 77 (84.6%) in upper middle-income countries, 10 (11%) in lower middle-income countries, and 1 (1.1%) in an unclassified country. The majority (77, or 84.6%) of respondents were male, and 71 (90.2%) were younger than 40. Access to basic imaging modalities was high, with access to computed tomography scan universal among the survey respondents. However, only 25 (27.5%) of respondents reported having access to imaging guidance systems (navigation), and 73 (80.2%) reported having access to high-speed drills. A high GDP per capita was associated with increased availability of high-speed drills and more time dedicated to educational endeavors in neurosurgery, such as didactic teaching and topic presentation (P < 0.05). CONCLUSIONS: This survey found that neurosurgery trainees and practitioners of Latin America and the Caribbean face many barriers to practice. These include inadequate state-of-the-art neurosurgical equipment, a lack of standardized training curricula, few research opportunities, and long working hours.


Assuntos
Neurocirurgiões , Neurocirurgia , Masculino , Humanos , Feminino , América Latina , Estudos Transversais , Neurocirurgia/educação , Região do Caribe
14.
bioRxiv ; 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36865164

RESUMO

Cancer immunotherapy offers lifesaving treatments for cancers, but the lack of reliable preclinical models that could enable the mechanistic studies of tumor-immune interactions hampers the identification of new therapeutic strategies. We hypothesized 3D confined microchannels, formed by interstitial space between bio-conjugated liquid-like solids (LLS), enable CAR T dynamic locomotion within an immunosuppressive TME to carry out anti-tumor function. Murine CD70-specific CAR T cells cocultured with the CD70-expressing glioblastoma and osteosarcoma demonstrated efficient trafficking, infiltration, and killing of cancer cells. The anti-tumor activity was clearly captured via longterm in situ imaging and supported by upregulation of cytokines and chemokines including IFNg, CXCL9, CXCL10, CCL2, CCL3, and CCL4. Interestingly, target cancer cells, upon an immune attack, initiated an "immune escape" response by frantically invading the surrounding microenvironment. This phenomenon however was not observed for the wild-type tumor samples which remained intact and produced no relevant cytokine response. Single cells collection and transcriptomic profiling of CAR T cells at regions of interest revealed feasibility of identifying differential gene expression amongst the immune subpopulations. Complimentary 3D in vitro platforms are necessary to uncover cancer immune biology mechanisms, as emphasized by the significant roles of the TME and its heterogeneity.

15.
Acta Biomater ; 172: 466-479, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37788737

RESUMO

Chimeric antigen receptor (CAR) T cell therapy has demonstrated remarkable success as an immunotherapy for hematological malignancies, and its potential for treating solid tumors is an active area of research. However, limited trafficking and mobility of T cells within the tumor microenvironment (TME) present challenges for CAR T cell therapy in solid tumors. To gain a better understanding of CAR T cell function in solid tumors, we subjected CD70-specific CAR T cells to a challenge by evaluating their immune trafficking and infiltration through a confined 3D microchannel network in a bio-conjugated liquid-like solid (LLS) medium. Our results demonstrated successful CAR T cell migration and anti-tumor activity against CD70-expressing glioblastoma and osteosarcoma tumors. Through comprehensive analysis of cytokines and chemokines, combined with in situ imaging, we elucidated that immune recruitment occurred via chemotaxis, and the effector-to-target ratio plays an important role in overall antitumor function. Furthermore, through single-cell collection and transcriptomic profiling, we identified differential gene expression among the immune subpopulations. Our findings provide valuable insights into the complex dynamics of CAR T cell function in solid tumors, informing future research and development in this promising cancer treatment approach. STATEMENT OF SIGNIFICANCE: The use of specialized immune cells named CAR T cells to combat cancers has demonstrated remarkable success against blood cancers. However, this success is not replicated in solid tumors, such as brain or bone cancers, mainly due to the physical barriers of these solid tumors. Currently, preclinical technologies do not allow for reliable evaluation of tumor-immune cell interactions. To better study these specialized CAR T cells, we have developed an innovative in vitro three-dimensional model that promises to dissect the interactions between tumors and CAR T cells at the single-cell level. Our findings provide valuable insights into the complex dynamics of CAR T cell function in solid tumors, informing future research and development in this promising cancer treatment approach.


Assuntos
Neoplasias Ósseas , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Linfócitos T , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Antígenos de Neoplasias , Neoplasias/metabolismo , Neoplasias Ósseas/metabolismo , Comunicação Celular , Microambiente Tumoral
16.
bioRxiv ; 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36993158

RESUMO

To prospectively determine whether brain tumors will respond to immune checkpoint inhibitors (ICIs), we developed a novel mRNA vaccine as a viral mimic to elucidate cytokine release from brain cancer cells in vitro. Our results indicate that cytokine signatures following mRNA challenge differ substantially from ICI responsive versus non-responsive murine tumors. These findings allow for creation of a diagnostic assay to quickly assess brain tumor immunogenicity, allowing for informed treatment with ICI or lack thereof in poorly immunogenic settings.

17.
medRxiv ; 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36993772

RESUMO

Messenger RNA (mRNA) has emerged as a remarkable tool for COVID-19 prevention but its use for induction of therapeutic cancer immunotherapy remains limited by poor antigenicity and a regulatory tumor microenvironment (TME). Herein, we develop a facile approach for substantially enhancing immunogenicity of tumor-derived mRNA in lipid-particle (LP) delivery systems. By using mRNA as a molecular bridge with ultrapure liposomes and foregoing helper lipids, we promote the formation of 'onion-like' multi-lamellar RNA-LP aggregates (LPA). Intravenous administration of RNA-LPAs mimics infectious emboli and elicits massive DC/T cell mobilization into lymphoid tissues provoking cancer immunogenicity and mediating rejection of both early and late-stage murine tumor models. Unlike current mRNA vaccine designs that rely on payload packaging into nanoparticle cores for toll-like receptor engagement, RNA-LPAs stimulate intracellular pathogen recognition receptors (RIG-I) and reprogram the TME thus enabling therapeutic T cell activity. RNA-LPAs were safe in acute/chronic murine GLP toxicology studies and immunologically active in client-owned canines with terminal gliomas. In an early phase first-in-human trial for patients with glioblastoma, we show that RNA-LPAs encoding for tumor-associated antigens elicit rapid induction of pro-inflammatory cytokines, mobilization/activation of monocytes and lymphocytes, and expansion of antigen-specific T cell immunity. These data support the use of RNA-LPAs as novel tools to elicit and sustain immune responses against poorly immunogenic tumors.

18.
Appl Environ Microbiol ; 78(15): 5444-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22635994

RESUMO

This study describes the prevalence of arrays of class 1 integron cassettes and Qnr determinants (A, B, and S) in 19 fluoroquinolone-resistant Escherichia coli isolates from chicken litter. qnrS and qnrA were the predominant genes in these fluoroquinolone-resistant isolates, and an uncommon array of aacA4-catB3-dfrA1 gene cassettes from a class1 integron was found. Additionally, aadA1 and dfrA1 gene cassettes, encoding resistance to streptomycin and trimethoprim, constituted the most common genes identified and was located on megaplasmids as well on the chromosome. Antibiotic resistance, pulsed-field gel electrophoresis (PFGE), and plasmid data suggest a genetically diverse origin of poultry E. coli isolates.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/genética , Fezes/microbiologia , Integrons/genética , Animais , Impressões Digitais de DNA , Primers do DNA/genética , Eletroforese em Gel de Campo Pulsado , Proteínas de Escherichia coli/genética , Fluoroquinolonas , Plasmídeos/genética , Aves Domésticas
19.
Neurol Med Chir (Tokyo) ; 62(12): 542-551, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36288973

RESUMO

We understand only a small fraction of the events happening in our brains; therefore, despite all the progress made thus far, a whole array of questions remains. Nonetheless, neurosurgeons invented new tools to circumvent the challenges that had plagued their predecessors. With the manufacturing boom of the 20th century, technological innovations blossomed enabling the neuroscientific community to study and operate upon the living brain in finer detail and with greater precision while avoiding harm to the nervous system. The purpose of this chronological review is to 1) raise awareness among future neurosurgeons about the latest advances in the field, 2) become familiar with innovations such as augmented reality (AR) that should be included in education given their ready applicability in surgical training, and 3) be comfortable with customizing these technologies to real-life cases like in the case of mixed reality.


Assuntos
Realidade Aumentada , Neurocirurgia , Humanos , Neurocirurgia/educação , Procedimentos Neurocirúrgicos/métodos , Neurocirurgiões
20.
Cells ; 11(12)2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35741103

RESUMO

The promising outcomes of chimeric antigen receptor (CAR) T cell therapy in hematologic malignancies potentiates its capability in the fight against many cancers. Nevertheless, this immunotherapy modality needs significant improvements for the treatment of solid tumors. Researchers have incrementally identified limitations and constantly pursued better CAR designs. However, even if CAR T cells are armed with optimal killer functions, they must overcome and survive suppressive barriers imposed by the tumor microenvironment (TME). In this review, we will discuss in detail the important role of TME in CAR T cell trafficking and how the intrinsic barriers contribute to an immunosuppressive phenotype and cancer progression. It is of critical importance that preclinical models can closely recapitulate the in vivo TME to better predict CAR T activity. Animal models have contributed immensely to our understanding of human diseases, but the intensive care for the animals and unreliable representation of human biology suggest in vivo models cannot be the sole approach to CAR T cell therapy. On the other hand, in vitro models for CAR T cytotoxic assessment offer valuable insights to mechanistic studies at the single cell level, but they often lack in vivo complexities, inter-individual heterogeneity, or physiologically relevant spatial dimension. Understanding the advantages and limitations of preclinical models and their applications would enable more reliable prediction of better clinical outcomes.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Animais , Movimento Celular , Imunoterapia Adotiva/métodos , Neoplasias/patologia , Linfócitos T , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA