Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
World J Microbiol Biotechnol ; 38(1): 4, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34825262

RESUMO

This review aims to elucidate the state of the art of microalgae-based biostimulants as a tool in agriculture by summarizing the biologically active compounds factors that influence the use of microalgae biostimulants and their application methods in the field. Additionally, we examined the factors that support the use of microalgal biostimulants to face abiotic and biotic stress in crop plants. The use of microalgae in crop production and the benefits of seed preparation, foliar application, soil drenching, and hydroponic treatments were discussed. Furthermore, the use of these biostimulants in crop plants and their multiple benefits such as, better rooting, higher crop, fruit yields, drought and salinity tolerance, photosynthetic activity and pathogen resistance was thoroughly presented. The present situation of microalgal biostimulants and their difficulties in the market was analyzed, as well as the perspectives of their use. However, data shows that microalgal derived biostimulants can be used as an alternative for the protection of crops and plant growth regulators and play a significant key role in increasing the levels of production, yield and health of crops. Special interest needs to focus on investigating more microalgae species and their biological active compound factors, due to the largely untapped field. Perspectives regarding future research lines and development priorities were included.


Assuntos
Fatores Biológicos/farmacologia , Produtos Agrícolas/crescimento & desenvolvimento , Microalgas/fisiologia , Reguladores de Crescimento de Plantas/farmacologia , Produção Agrícola , Produtos Agrícolas/efeitos dos fármacos , Solo , Estresse Fisiológico
2.
Artigo em Inglês | MEDLINE | ID: mdl-30755080

RESUMO

Spent catalysts represent an environmental concern, mainly due to their elevated metal content. Although conventional treatment methods for spent catalysts are available, they generate large volumes of potentially harmful wastes and gaseous emissions. To overcome the environmental impact, biotechnological approaches are currently being explored and developed. Thus, the current study assayed the capability of Bacillus megaterium strain MNSH1-9K-1 to remove Al, Ni, V and Ti contained in the spent catalyst coded as ECAT-TL-II. To this end, B. megaterium MNSH1-9K-1 growth and metal uptake abilities in the presence of ECAT-TL-II spent catalyst at 15% (wt/vol) pulp density were evaluated in modified Starkey medium at 37 °C and 200 rpm. The results presented here show B. megaterium resistance capability to the high-metal content residue, and its Al, V and Ni removal ability, in 1,059.15 ± 197.28 mg kg-1 of Al, 43.39 ± 24.13 mg kg-1 of V and 0.58 ± 0.00 mg kg-1 of Ni, corresponding to the 0.79%, 1.63% and 0.46% of each metal content, respectively, while no Ti removal was detected. Besides, it was observed that the sporulation process took place in B. megaterium cells in the presence of the spent catalyst. The results shown in this study suggest the potential of the strain MNSH1-9K-1 for the removal of metals contained in high-metal content residues, contributing also to the knowledge of the metal resistance and removal abilities of B. megaterium in the presence of a spent catalyst, and how morphological cell changes may be occurring while metal removal is taking place.


Assuntos
Bacillus megaterium/efeitos dos fármacos , Poluentes Ambientais/análise , Resíduos Industriais/análise , Metais/análise , Indústria de Petróleo e Gás , Esporos Bacterianos/efeitos dos fármacos , Bacillus megaterium/crescimento & desenvolvimento , Bacillus megaterium/fisiologia , Biodegradação Ambiental , Catálise , Viabilidade Microbiana/efeitos dos fármacos , Modelos Teóricos , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/fisiologia
3.
Curr Microbiol ; 73(2): 165-71, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27107759

RESUMO

Bacillus megaterium strain MNSH1-9K-1 was isolated from a mining site in Guanajuato, Mexico. This B. megaterium strain presented the ability to remove Ni and V from a spent catalyst. Also, its associated metal resistance genes nccA, hant, VAN2, and smtAB were previously identified by a PCR approach. The present study reports for the first time, in B. megaterium, the changes in the expression of the genes nccA (Ni-Co-Cd resistance); hant (high-affinity nickel transporter); smtAB, a metal-binding protein gene; and VAN2 (V resistance) after exposure to 200 ppm of Ni and 200 ppm of V during the stationary phase of the microorganism in PHGII liquid media. The data presented here may contribute to the knowledge of the genes involved in the Ni and V resistances of B. megaterium, and the possible pathways implicated in the Ni-V removal processes, which may be potentiated for the biological treatment of high metal content residues.


Assuntos
Bacillus megaterium/genética , Proteínas de Bactérias/genética , Níquel/metabolismo , Microbiologia do Solo , Vanádio/metabolismo , Bacillus megaterium/isolamento & purificação , Bacillus megaterium/metabolismo , Proteínas de Bactérias/metabolismo , México , Mineração
4.
Braz J Microbiol ; 55(1): 245-254, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38212508

RESUMO

Plastics are widely used for diverse applications due to their versatility. However, their negative impact on ecosystems is undeniable due to their long-term degradation. Thus, there is a rising need for developing eco-friendlier alternatives to substitute fossil-based plastics, like biopolymers. PHA are synthesized intracellularly by microorganisms under stressful conditions of growth and have similar characteristics to conventional polymers, like their melting point, transition temperatures, crystallinity, and flexibility. Although it is feasible to use biopolymers for diverse industrial applications, their elevated production cost due to the supplies needed for microbiological procedures and the low productivity yields obtained have been the main limiting factors for their commercial success. The present study assessed the ability of Bacillus megaterium strain MNSH1-9K-1 to produce biopolymers using low-cost media from different kinds of fruit-peel residues. The results show that MNSH1-9K-1 can produce up to 58 g/L of PHB when grown in a medium prepared from orange-peel residues. The data obtained provide information to enhance the scalability of these kinds of biotechnological processes.


Assuntos
Bacillus megaterium , Poli-Hidroxialcanoatos , Ecossistema , Biopolímeros/metabolismo , Biotecnologia
5.
Folia Microbiol (Praha) ; 68(2): 167-179, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36367638

RESUMO

In this review, research on the use of microalgae as an option for bioremediation purposes of pharmaceutical compounds is reported and discussed thoroughly. Pharmaceuticals have been detected in water bodies around the world, attracting attention towards the increasing potential risks to humans and aquatic biota. Unfortunately, pharmaceuticals have no regulatory standards for safe disposal in many countries. Despite the advances in new analytical techniques, the current wastewater treatment facilities in many countries are ineffective to remove the whole presence of pharmaceutical compounds and their metabolites. Though new methods are substantially effective, removal rates of drugs from wastewater make the cost-effectiveness ratio a not viable option. Therefore, the necessity for investigating and developing more adequate removal treatments with a higher efficiency rate and at a lower cost is mandatory. The present review highlights the algae-based removal strategies for bioremediation purposes, considering their pathway as well as the removal rate and efficiency of the microalgae species used in assays. We have critically reviewed both application of living and non-living microalgae biomass for bioremediation purposes considering the most commonly used microalgae species. In addition, the use of modified and immobilized microalgae biomass for the removal of pharmaceutical compounds from water was discussed. Furthermore, research considering various microalgal species and their potential use to detoxify organic and inorganic toxic compounds were well evaluated in the review. Further research is required to exploit the potential use of microalgae species as an option for the bioremediation of pharmaceuticals in water.


Assuntos
Microalgas , Humanos , Microalgas/metabolismo , Biodegradação Ambiental , Águas Residuárias , Biomassa , Preparações Farmacêuticas/metabolismo
6.
J Microbiol Methods ; 198: 106494, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35643293

RESUMO

The potential of Acidithiobacillus (Thiobacillus) genus members, namely Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans, for bioleaching purposes is known. Specifically, previous studies have shown the potential of A. thiooxidans strain DSM 26636 used in bioleaching processes to remove metals in high-metal-content matrices. All Acidithiobacillus growth-monitoring techniques available to date, including sulfate production, commonly used, present disadvantages. Thus, the current work shows a technique based on DNA quantification to evaluate the growth of A. thiooxidans DSM 26636, which is useful even in the presence of a high-metal-content residue. This proposed methodology may represent a functional complementary tool to evaluate Acidithiobacillus growth to develop biometallurgical applications.


Assuntos
Acidithiobacillus thiooxidans , Acidithiobacillus , Acidithiobacillus/genética , Acidithiobacillus thiooxidans/genética , DNA , Metais
7.
Pol J Microbiol ; 71(4): 539-551, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36511581

RESUMO

The presence of colonial and solitary ciliated peritrichous protozoa was determined in a Sequencing Batch Reactor system filled with tezontle, a volcanic rock, economic, and abundant material that can be found in some parts of the world, like Mexico. The presence of these protozoa was related to the removal efficiencies of organic matter. Also, two novel staining techniques are proposed for staining both colonial and solitary peritrichous protozoa. The results show that tezontle promotes the growth of solitary and colonial ciliated peritrichous protozoa, which, once identified, could be used as indicators of the efficiency of the wastewater treatment process. Additionally, the staining techniques established in the current study allowed the precise observation of protozoan nuclei. They can represent a useful complementary methodology for identifying protozoan species present in water treatment processes, along with the already existing identification techniques. The number and variety of protozoa found in the system may be considered potential bioindicators of water quality during biological treatments.


Assuntos
Purificação da Água , Qualidade da Água , Purificação da Água/métodos , México , Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos
8.
Appl Environ Microbiol ; 76(22): 7559-65, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20889789

RESUMO

Growth of Bacillus subtilis cells, normally adapted at Earth-normal atmospheric pressure (∼101.3 kPa), was progressively inhibited by lowering of pressure in liquid LB medium until growth essentially ceased at 2.5 kPa. Growth inhibition was immediately reversible upon return to 101.3 kPa, albeit at a slower rate. A population of B. subtilis cells was cultivated at the near-inhibitory pressure of 5 kPa for 1,000 generations, where a stepwise increase in growth was observed, as measured by the turbidity of 24-h cultures. An isolate from the 1,000-generation population was obtained that showed an increase in fitness at 5 kPa when compared to the ancestral strain or a strain obtained from a parallel population that evolved for 1,000 generations at 101.3 kPa. The results from this preliminary study have implications for understanding the ability of terrestrial microbes to grow in low-pressure environments such as Mars.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Pressão Hidrostática , Adaptação Biológica , Bacillus subtilis/fisiologia , Inoculações Seriadas
9.
Curr Microbiol ; 60(4): 263-7, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19924481

RESUMO

The role played by the Y-family DNA polymerases YqjH and YqjW in protecting sporulating cells of Bacillus subtilis from DNA damage was determined. The absence of either yqjH and/or yqjW not only reduced sporulation efficiency but also sensitized the sporulating cells to hydrogen peroxide, tert-butylhydroperoxide (t-BHP), mitomycin-C (M-C), and UV-C radiation. Moreover, these DNA-damaging agents increased the mutation frequency of wild-type sporulating cells to 4-azaleucine, but the production of mutants was YqjH- and YqjW-dependent. In conclusion, the results presented here indicate that YqjH/YqjW-dependent-translesion synthesis (TLS) operates in sporulating B. subtilis cells and contributes in processing spontaneous and artificially induced genetic damage, which is apparently required for an efficient sporulation process.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Esporos Bacterianos/fisiologia , Bacillus subtilis/enzimologia , Proteínas de Bactérias/genética , DNA Bacteriano/efeitos dos fármacos , DNA Bacteriano/metabolismo , DNA Bacteriano/efeitos da radiação , DNA Polimerase Dirigida por DNA/genética , Deleção de Genes , Peróxido de Hidrogênio/toxicidade , Viabilidade Microbiana , Mitomicina/toxicidade , Esporos Bacterianos/enzimologia , Raios Ultravioleta , terc-Butil Hidroperóxido/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA