RESUMO
Detection of disseminated tumor cells in the blood circulation is important in assessing tumor progression. The objective of this examination was to develop a highly specific and sensitive quantitative realtime reverse transcriptase-polymerase chain reaction (qRT-PCR) assay for the detection of relevant tumor-associated transcripts in patients' blood. The qRT-PCR assays detect the human epidermal growth factor receptor 2 (HER2) and CK20 transcripts of two tumor cells spiked into 5 mL of blood after an immunomagnetic tumor cell enrichment. Furthermore, the HER2 assay is only specific when enrichment is included. This procedure is a useful alternative to fluorescence in situ hybridization and immunocytochemistry for gene alteration analysis in human tumors. The analysis of the studied molecular markers of tumor cells in blood may be useful in the detection of disseminated tumor cells as well as for monitoring treatment response, early detection of relapse, and for stratification of patients with carcinoma.
Assuntos
Biomarcadores Tumorais/análise , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Separação Imunomagnética/métodos , Proteínas de Neoplasias/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Biomarcadores Tumorais/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Linhagem Celular , Sistemas Computacionais , Humanos , Invasividade Neoplásica , Proteínas de Neoplasias/genéticaRESUMO
Compression injury to the spinal cord (SC) results in vascular changes affecting the severity of the primary damage of the spinal cord. The recruitment of bone marrow (BM)-derived cells contribute to revascularization and tissue regeneration in a wide range of ischemic pathologies. Involvement of these cells in the vascular repair process has been investigated in an animal model of spinal cord injury (SCI). Temporal gene and protein expression of the BM-derived stem cell markers CD133 and CD34, of the mobilization factor SDF-1 and its receptor CXCR4 were determined following SC compression injury in rats. CD133 was expressed in uninjured tissue by cells surrounding arterioles identified as pericytes by co-expression of alpha-SMA. These cells mostly disappeared 2 days after injury but repopulated the tissue after 2 weeks. CD34 was expressed by endothelial cells and CD11b+ macrophages/microglia invading the injured tissue as observed 2 weeks following injury. SDF-1 was induced in reactive astrocytes and endothelial cells not until 2 weeks post-SCI. Comparison of the variation between CD34, CD133, CXCR4, and SDF-1 revealed a corresponding trend of CD133 with the SDF-1 expression. This study showed that resident microvascular CD133+ pericytes with presumptive stem cell potential are sensitive to SCI. Their decline following SCI and the delayed induction of SDF-1 may contribute to vessel destabilisation and inefficient revascularization. In addition, none of the analyzed markers could be assigned clearly to BM-derived cells. Together, our findings suggest that effective recruitment of pericytes may serve as a therapeutic option to improve microcirculation after SCI.