Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(3): e0143923, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38349149

RESUMO

Aquaculture provides a rich resource of high-quality protein; however, the production is challenged by emerging pathogens such as Vibrio crassostreae. While probiotic bacteria have been proposed as a sustainable solution to reduce pathogen load in aquaculture, their application requires a comprehensive assessment across the aquaculture food chain. The purpose of this study was to determine the antagonistic effect of the potential probiotic bacterium Phaeobacter piscinae against the emerging fish pathogen V. crassostreae in aquaculture feed algae that can be an entry point for pathogens in fish and shellfish aquaculture. P. piscinae strain S26 produces the antibacterial compound tropodithietic acid (TDA). In a plate-based assay, P. piscinae S26 was equally to more effective than the well-studied Phaeobacter inhibens DSM17395 in its inhibition of the fish pathogens Vibrio anguillarum 90-11-286 and V. crassostreae DMC-1. When co-cultured with the microalgae Tetraselmis suecica and Isochrysis galbana, P. piscinae S26 reduced the maximum cell density of V. crassostreae DMC-1 by 2 log and 3-4 log fold, respectively. A TDA-deficient mutant of P. piscinae S26 inhibited V. crassostreae DMC-1 to a lesser extent than the wild type, suggesting that the antagonistic effect involves TDA and other factors. TDA is the prime antagonistic agent of the inhibition of V. anguillarum 90-11-286. Comparative genomics of V. anguillarum 90-11-286 and V. crassostreae DMC-1 revealed that V. crassostreae DMC-1 carries a greater arsenal of antibiotic resistance genes potentially contributing to the reduced effect of TDA. In conclusion, P. piscinae S26 is a promising new candidate for inhibition of emerging pathogens such as V. crassostreae DMC-1 in algal feed systems and could contribute to a more sustainable aquaculture industry.IMPORTANCEThe globally important production of fish and shellfish in aquaculture is challenged by disease outbreaks caused by pathogens such as Vibrio crassostreae. These outbreaks not only lead to substantial economic loss and environmental damage, but treatment with antibiotics can also lead to antibiotic resistance affecting human health. Here, we evaluated the potential of probiotic bacteria, specifically the newly identified strain Phaeobacter piscinae S26, to counteract these threats in a sustainable manner. Through a systematic assessment of the antagonistic effect of P. piscinae S26 against V. crassostreae DMC-1, particularly within the context of algal feed systems, the study demonstrates the effectiveness of P. piscinae S26 as probiotic and thereby provides a strategic pathway for addressing disease outbreaks in aquaculture. This finding has the potential of significantly contributing to the long-term stability of the industry, highlighting the potential of probiotics as an efficient and environmentally conscious approach to safeguarding aquaculture productivity against the adverse impact of pathogens.


Assuntos
Doenças dos Peixes , Probióticos , Rhodobacteraceae , Vibrio , Animais , Humanos , Vibrio/fisiologia , Peixes , Aquicultura , Probióticos/farmacologia , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/microbiologia
2.
Environ Microbiol ; 25(7): 1344-1362, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36807464

RESUMO

Bacterial populations communicate using quorum-sensing (QS) molecules and switch on QS regulation to engage in coordinated behaviour such as biofilm formation or virulence. The marine fish pathogen Vibrio anguillarum harbours several QS systems, and our understanding of its QS regulation is still fragmentary. Here, we identify the VanT-QS regulon and explore the diversity and trajectory of traits under QS regulation in Vibrio anguillarum through comparative transcriptomics of two wildtype strains and their corresponding mutants artificially locked in QS-on (ΔvanO) or QS-off (ΔvanT) states. Intriguingly, the two wildtype populations showed different QS responses to cell density changes and operated primarily in the QS-on and QS-off spectrum, respectively. Examining 27 V. anguillarum strains revealed that ~11% were QS-negative, and GFP-reporter measurements of nine QS-positive strains revealed a highly strain-specific nature of the QS responses. We showed that QS controls a plethora of genes involved in processes such as central metabolism, biofilm formation, competence, T6SS, and virulence properties in V. anguillarum, with large strain-specific differences. Moreover, we demonstrated that the QS state is an important driver of virulence towards fish larvae in one of two V. anguillarum strains. We speculate that infections by mixed-strain communities spanning diverse QS strategies optimize the infection efficiency of the pathogen.


Assuntos
Doenças dos Peixes , Percepção de Quorum , Vibrioses , Vibrio , Vibrio/genética , Vibrio/metabolismo , Vibrio/patogenicidade , Animais , Peixes , Doenças dos Peixes/microbiologia , Vibrioses/microbiologia , Vibrioses/veterinária , Especificidade da Espécie , Regulon , Perfilação da Expressão Gênica
3.
Environ Sci Technol ; 53(20): 11636-11643, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31557003

RESUMO

With the rising plastic pollution in the oceans, research on the plastisphere-the microorganisms interacting with marine plastic debris-has emerged. Microbial communities colonizing plastic have been characterized from several ocean regions and they are distinct from the communities of the surrounding waters, and a few plastic-degrading microorganisms have been isolated from other environments. Therefore, we propose that marine microorganisms have adapted to plastic as a surface for colonization and potentially degradation. When comparing the taxonomic patterns of plastic-associated, marine bacteria, recurring groups and families such as the families Erythrobacteraceae and Rhodobacteraceae (Alphaproteobacteria), Flavobacteriaceae (Bacteriodetes), and the phylum of cyanobacteria (such as the Phormidium genus) can be identified. Thereby, we provide a perspective on which bacterial candidates could play a role in the colonization and possible degradation of plastic in the oceans due to their occurrence on marine plastic debris. We emphasize the need for extended and reproducible collection of data to assess the existence of a core microbiome or core functionalities of the plastisphere and confirm the capability of these bacterial candidates for biodegradation of plastic. Furthermore, we suggest the next steps in research to elucidate the level of natural bioremediation and the exploitation of bacterial degradative mechanisms of plastic.


Assuntos
Plásticos , Resíduos , Bactérias , Biodegradação Ambiental , Oceanos e Mares
4.
mSystems ; : e0058324, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39082797

RESUMO

Microalgal microbiomes play vital roles in the growth and health of their host, however, their composition and functions remain only partially characterized, especially across microalgal phyla. In this study, a natural seawater microbiome was introduced to three distinct, axenic species of microalgae, the haptophyte Isochrysis galbana, the chlorophyte Tetraselmis suecica, and the diatom Conticribra weissflogii (previously Thalassiosira), and its divergence and assembly under constant illumination was monitored over 49 days using 16S rRNA amplicon and metagenomic analyses. The microbiomes had a high degree of host specificity in terms of taxonomic composition and potential functions, including CAZymes profiles. Rhodobacteraceae and Flavobacteriaceae families were abundant across all microalgal hosts, but I. galbana microbiomes diverged further from T. suecica and C. weissflogii microbiomes. I. galbana microbiomes had a much higher relative abundance of Flavobacteriaceae, whereas the two other algal microbiomes had higher relative abundances of Rhodobacteraceae. This could be due to the bacterivorous mixotrophic nature of I. galbana affecting the carbohydrate composition available to the microbiomes, which was supported by the CAZymes profile of I. galbana microbiomes diverging further from those of T. suecica and C. weissflogii microbiomes. Finally, the presence of denitrification and other anaerobic pathways was found exclusively in the microbiomes of C. weissflogii, which we speculate could be a result of anoxic microenvironments forming in aggregates formed by this diatom during the experiment. These results underline the significant role of the microalgal host species on microbiome composition and functional profiles along with other factors, such as the trophic mode of the microalgal host. IMPORTANCE: As the main primary producers of the oceans, microalgae serve as cornerstones of the ecosystems they are part of. Additionally, they are increasingly used for biotechnological purposes such as the production of nutraceuticals, pigments, and antioxidants. Since the bacterial microbiomes of microalgae can affect their hosts in beneficial and detrimental ways, understanding these microbiomes is crucial to both the ecological and applied roles of microalgae. The present study advances the understanding of microalgal microbiome assembly, composition, and functionality across microalgal phyla, which may inform the modeling and engineering of microalgal microbiomes for biotechnological purposes.

5.
Microbiol Spectr ; : e0340822, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36975854

RESUMO

The bacterial communities associated with microalgae are vital for the growth and health of the host, and engineering algal microbiomes can enhance the fitness of the algae. Characterization of these microbiomes mostly relies on sequencing of DNA, which can be extracted with an array of protocols that potentially impact DNA quantity and quality and thus potentially affect subsequent analyses of microbiome composition. Here, we extracted DNA from Isochrysis galbana, Tetraselmis suecica, and Conticribra weissflogii microbiomes using four different protocols. DNA yield and quality was greatly impacted by the choice of extraction protocol, whereas microbiome composition determined by 16S rRNA gene amplicon sequencing was only impacted to a minor degree, with microalgal host species being the main determinant of microbiome composition. The I. galbana microbiome was dominated by the genus Alteromonas, whereas the microbiome associated with T. suecica was dominated by Marinobacteraceae and Rhodobacteraceae family members. While these two families were also prevalent in the microbiome associated with C. weissflogii, Flavobacteriaceae and Cryomorphaceae were also highly dominant. Phenol-chloroform extraction resulted in higher DNA quality and quantity compared to commercial kits; however, because they have other advantages such as high throughput and low toxicity, commercial kits can be employed to great benefit for the characterization of microalgal microbiomes. IMPORTANCE Microalgae are very important as primary producers in the ocean, but also as forthcoming sustainable producers of biotechnologically interesting compounds. Accordingly, the bacterial microbiomes associated with microalgae are attracting increasing attention due to their effects on the growth and health of microalgae. Since most members of these microbiomes cannot be cultured, knowledge about community composition is best obtained using sequencing-based methods. This study evaluates the impact of DNA extraction methods on DNA quantity and quality along with sequence-based characterization of the bacterial microbiome composition of three microalgae: Isochrysis galbana, Tetraselmis suecica, and Conticribra weissflogii.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA