Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Bioorg Med Chem ; 100: 117614, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38340640

RESUMO

Ricin, a category-B agent for bioterrorism, and Shiga toxins (Stxs), which cause food poisoning bind to the ribosomal P-stalk to depurinate the sarcin/ricin loop. No effective therapy exists for ricin or Stx intoxication. Ribosome binding sites of the toxins have not been targeted by small molecules. We previously identified CC10501, which inhibits toxin activity by binding the P-stalk pocket of ricin toxin A subunit (RTA) remote from the catalytic site. Here, we developed a fluorescence polarization assay and identified a new class of compounds, which bind P-stalk pocket of RTA with higher affinity and inhibit catalytic activity with submicromolar potency. A lead compound, RU-NT-206, bound P-stalk pocket of RTA with similar affinity as a five-fold larger P-stalk peptide and protected cells against ricin and Stx2 holotoxins for the first time. These results validate the P-stalk binding site of RTA as a critical target for allosteric inhibition of the active site.


Assuntos
Ricina , Sítios de Ligação , Peptídeos/farmacologia , Ligação Proteica , Ribossomos/metabolismo , Ricina/antagonistas & inibidores , Ricina/metabolismo
2.
Cell Commun Signal ; 20(1): 99, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35761398

RESUMO

BACKGROUND: Bone morphogenetic proteins (BMP) are evolutionarily conserved morphogens that are reactivated in lung carcinomas. In lung cancer cells, BMP signaling suppresses AMP activated kinase (AMPK) by inhibiting LKB1. AMPK is activated by mitochondrial stress that inhibits ATP production, which is enhanced 100-fold when phosphorylated by LKB1. Activated AMPK can promote survival of cancer cells but its "hyperactivation" induces cell death. The studies here reveal novel cell death mechanisms induced by BMP inhibitors, together with agents targeting the mitochondria, which involves the "hyperactivation" of AMPK. METHODS: This study examines the synergistic effects of two BMP inhibitors together with mitochondrial targeting agents phenformin and Ym155, on cell death of lung cancer cells expressing LKB1 (H1299), LKB1 null (A549), and A549 cells transfected with LKB1 (A549-LKB1). Cell death mechanisms evaluated were the activation of caspases and the nuclear localization of apoptosis inducing factor (AIF). A769662 was used to allosterically activate AMPK. Knockdown of BMPR2 and LKB1 using siRNA was used to examine their effects on nuclear localization of AMPK. Validation studies were performed on five passage zero primary NSCLC. RESULTS: Both BMP inhibitors synergistically suppressed growth when combined with Ym155 or phenformin in cells expressing LKB1. The combination of BMP inhibitors with mitochondrial targeting agents enhanced the activation of AMPK in lung cancer cells expressing LKB1. Allosteric activation of AMPK with A769662 induced cell death in both H1299 and A549 cells. Cell death induced by the combination of BMP inhibitors and mitochondrial-targeting agents did not activate caspases. The combination of drugs induced nuclear localization of AIF in cells expressing LKB1, which was attenuated by knockdown of LKB1. Knockdown of BMPR2 together with Ym155 increased nuclear localization of AIF. Combination therapy also enhanced cell death and AIF nuclear localization in primary NSCLC. CONCLUSIONS: These studies demonstrate that inhibition of BMP signaling together with mitochondrial targeting agents induce AIF caspase-independent cell death, which involves the "hyperactivation" of AMPK. AIF caspase-independent cell death is an evolutionarily conserved cell death pathway that is infrequently studied in cancer. These studies provide novel insight into mechanisms inducing AIF caspase-independent cell death in cancer cells using BMP inhibitors. Video Abstract.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose , Fator de Indução de Apoptose/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Caspases/metabolismo , Caspases/farmacologia , Morte Celular , Humanos , Pulmão/metabolismo , Neoplasias Pulmonares/patologia , Mitocôndrias/metabolismo , Fenformin/metabolismo , Fenformin/farmacologia , Proteínas Serina-Treonina Quinases
3.
Cell Commun Signal ; 19(1): 97, 2021 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-34563224

RESUMO

BACKGROUND: Recent studies have shown that bone morphogenetic protein receptor 2 (BMPR2) regulates cell survival signaling events in cancer cells independent of the BMP type 1 receptor (BMPR1) or the Smad-1/5 transcription factor. Mutations in BMPR2 trafficking proteins leads to overactive BMP signaling, which leads to neurological diseases caused by BMPR2 stabilization of the microtubules. It is not known whether BMPR2 regulates the microtubules in cancer cells and what effect this has on cell survival. It is also not known whether alterations in BMPR2 trafficking effects activity and response to BMPR2 inhibitors. METHODS: We utilized BMPR2 siRNA and the BMP receptor inhibitors JL5 and Ym155, which decrease BMPR2 signaling and cause its mislocalization to the cytoplasm. Using the JL5 resistant MDA-MD-468 cell line and sensitive lung cancer cell lines, we examined the effects of BMPR2 inhibition on BMPR2 mislocalization to the cytoplasm, microtubule destabilization, lysosome activation and cell survival. RESULTS: We show that the inhibition of BMPR2 destabilizes the microtubules. Destabilization of the microtubules leads to the activation of the lysosomes. Activated lysosomes further decreases BMPR2 signaling by causing it to mislocalizated to the cytoplasm and/or lysosome for degradation. Inhibition of the lysosomes with chloroquine attenuates BMPR2 trafficking to the lysosome and cell death induced by BMPR2 inhibitors. Furthermore, in MDA-MD-468 cells that are resistant to JL5 induced cell death, BMPR2 was predominately located in the cytoplasm. BMPR2 failed to localize to the cytoplasm and/or lysosome following treatment with JL5 and did not destabilize the microtubules or activate the lysosomes. CONCLUSIONS: These studies reveal that the inhibition of BMPR2 destabilizes the microtubules promoting cell death of cancer cells that involves the activation of the lysosomes. Resistance to small molecules targeting BMPR2 may occur if the BMPR2 is localized predominantly to the cytoplasm and/or fails to localize to the lysosome for degradation. Video Abstract.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/antagonistas & inibidores , Morte Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Humanos , Imidazóis/farmacologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Lisossomos/efeitos dos fármacos , Lisossomos/genética , Microtúbulos/efeitos dos fármacos , Microtúbulos/genética , Naftoquinonas/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Quinolonas/farmacologia , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/efeitos dos fármacos
4.
Int J Mol Sci ; 22(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34299083

RESUMO

Dihydromyricetin is a natural bioactive flavonoid with unique GABAA receptor activity with a putative mechanism of action to reduce the intoxication effects of ethanol. Although dihydromyricetin's poor oral bioavailability limits clinical utility, the promise of this mechanism for the treatment of alcohol use disorder warrants further investigation into its specificity and druggable potential. These experiments investigated the bioavailability of dihydromyricetin in the brain and serum associated with acute anti-intoxicating effects in C57BL/6J mice. Dihydromyricetin (50 mg/kg IP) administered 0 or 15-min prior to ethanol (PO 5 g/kg) significantly reduced ethanol-induced loss of righting reflex. Total serum exposures (AUC0→24) of dihydromyricetin (PO 50 mg/kg) via oral (PO) administration were determined to be 2.5 µM × h (male) and 0.7 µM × h (female), while intraperitoneal (IP) administration led to 23.8-fold and 7.2- increases in AUC0→24 in male and female mice, respectively. Electrophysiology studies in α5ß3γ2 GABAA receptors expressed in Xenopus oocytes suggest dihydromyricetin (10 µM) potentiates GABAergic activity (+43.2%), and the metabolite 4-O-methyl-dihydromyricetin (10 µM) negatively modulates GABAergic activity (-12.6%). Our results indicate that administration route and sex significantly impact DHM bioavailability in mice, which is limited by poor absorption and rapid clearance. This correlates with the observed short duration of DHM's anti-intoxicating properties and highlights the need for further investigation into mechanism of DHM's potential anti-intoxicating properties.


Assuntos
Intoxicação Alcoólica/prevenção & controle , Encéfalo/metabolismo , Etanol/toxicidade , Flavonóis/farmacologia , Intoxicação Alcoólica/etiologia , Intoxicação Alcoólica/metabolismo , Intoxicação Alcoólica/patologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Depressores do Sistema Nervoso Central/toxicidade , Feminino , Flavonóis/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Molecules ; 26(6)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33810134

RESUMO

Alcohol use disorder (AUD) affects over 18 million people in the US. Unfortunately, pharmacotherapies available for AUD have limited clinical success and are under prescribed. Previously, we established that avermectin compounds (ivermectin [IVM] and moxidectin) reduce alcohol (ethanol/EtOH) consumption in mice, but these effects are limited by P-glycoprotein (Pgp/ABCB1) efflux. The current study tested the hypothesis that dihydromyricetin (DHM), a natural product suggested to inhibit Pgp, will enhance IVM potency as measured by changes in EtOH consumption. Using a within-subjects study design and two-bottle choice study, we tested the combination of DHM (10 mg/kg; i.p.) and IVM (0.5-2.5 mg/kg; i.p.) on EtOH intake and preference in male and female C57BL/6J mice. We also conducted molecular modeling studies of DHM with the nucleotide-binding domain of human Pgp that identified key binding residues associated with Pgp inhibition. We found that DHM increased the potency of IVM in reducing EtOH consumption, resulting in significant effects at the 1.0 mg/kg dose. This combination supports our hypothesis that inhibiting Pgp improves the potency of IVM in reducing EtOH consumption. Collectively, we demonstrate the feasibility of this novel combinatorial approach in reducing EtOH consumption and illustrate the utility of DHM in a novel combinatorial approach.


Assuntos
Alcoolismo/tratamento farmacológico , Flavonóis/farmacologia , Ivermectina/farmacologia , Consumo de Bebidas Alcoólicas/metabolismo , Consumo de Bebidas Alcoólicas/patologia , Alcoolismo/metabolismo , Alcoolismo/patologia , Animais , Quimioterapia Combinada , Feminino , Masculino , Camundongos
6.
Antibiotics (Basel) ; 13(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38534644

RESUMO

The global threat of multidrug-resistant Gram-negative bacterial pathogens necessitates the development of new and effective antibiotics. FtsZ is an essential and highly conserved cytoskeletal protein that is an appealing antibacterial target for new antimicrobial therapeutics. However, the effectiveness of FtsZ inhibitors against Gram-negative species has been limited due in part to poor intracellular accumulation. To address this limitation, we have designed a FtsZ inhibitor (RUP4) that incorporates a chlorocatechol siderophore functionality that can chelate ferric iron (Fe3+) and utilizes endogenous siderophore uptake pathways to facilitate entry into Gram-negative pathogens. We show that RUP4 is active against both Klebsiella pneumoniae and Acinetobacter baumannii, with this activity being dependent on direct Fe3+ chelation and enhanced under Fe3+-limiting conditions. Genetic deletion studies in K. pneumoniae reveal that RUP4 gains entry through the FepA and CirA outer membrane transporters and the FhuBC inner membrane transporter. We also show that RUP4 exhibits bactericidal synergy against K. pneumoniae when combined with select antibiotics, with the strongest synergy observed with PBP2-targeting ß-lactams or MreB inhibitors. In the aggregate, our studies indicate that incorporation of Fe3+-chelating moieties into FtsZ inhibitors is an appealing design strategy for enhancing activity against Gram-negative pathogens of global clinical significance.

7.
ACS Infect Dis ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38873918

RESUMO

Shiga toxins are the main virulence factors of Shiga toxin producing E. coli (STEC) and S. dysenteriae. There is no effective therapy to counter the disease caused by these toxins. The A1 subunits of Shiga toxins bind the C-termini of ribosomal P-stalk proteins to depurinate the sarcin/ricin loop. The ribosome binding site of Shiga toxin 2 has not been targeted by small molecules. We screened a fragment library against the A1 subunit of Shiga toxin 2 (Stx2A1) and identified a fragment, BTB13086, which bound at the ribosome binding site and mimicked the binding mode of the P-stalk proteins. We synthesized analogs of BTB13086 and identified a series of molecules with similar affinity and inhibitory activity. These are the first compounds that bind at the ribosome binding site of Stx2A1 and inhibit activity. These compounds hold great promise for further inhibitor development against STEC infection.

8.
J Med Chem ; 67(5): 3467-3503, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38372781

RESUMO

Controlling malaria requires new drugs against Plasmodium falciparum. The P. falciparum cGMP-dependent protein kinase (PfPKG) is a validated target whose inhibitors could block multiple steps of the parasite's life cycle. We defined the structure-activity relationship (SAR) of a pyrrole series for PfPKG inhibition. Key pharmacophores were modified to enable full exploration of chemical diversity and to gain knowledge about an ideal core scaffold. In vitro potency against recombinant PfPKG and human PKG were used to determine compound selectivity for the parasite enzyme. P. berghei sporozoites and P. falciparum asexual blood stages were used to assay multistage antiparasitic activity. Cellular specificity of compounds was evaluated using transgenic parasites expressing PfPKG carrying a substituted "gatekeeper" residue. The structure of PfPKG bound to an inhibitor was solved, and modeling using this structure together with computational tools was utilized to understand SAR and establish a rational strategy for subsequent lead optimization.


Assuntos
Antimaláricos , Malária Falciparum , Animais , Humanos , Antimaláricos/farmacologia , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum , Animais Geneticamente Modificados , Relação Estrutura-Atividade
9.
ACS Omega ; 8(7): 6597-6607, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36844602

RESUMO

Chlamydiae are obligate intracellular Gram-negative bacteria and widespread pathogens in humans and animals. Broad-spectrum antibiotics are currently used to treat chlamydial infections. However, broad-spectrum drugs also kill beneficial bacteria. Recently, two generations of benzal acylhydrazones have been shown to selectively inhibit chlamydiae without toxicity to human cells and lactobacilli, which are dominating, beneficial bacteria in the vagina of reproductive-age women. Here, we report the identification of two acylpyrazoline-based third-generation selective antichlamydials (SACs). With minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) of 10-25 µM against Chlamydia trachomatis and Chlamydia muridarum, these new antichlamydials are 2- to 5-fold more potent over the benzal acylhydrazone-based second-generation selective antichlamydial lead SF3. Both acylpyrazoline-based SACs are well tolerated by Lactobacillus, Escherichia coli, Klebsiella, and Salmonella as well as host cells. These third-generation selective antichlamydials merit further evaluation for therapeutic application.

10.
Sci Rep ; 12(1): 13135, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35908087

RESUMO

The imidazolium compound Ym155 was first reported to be a survivin inhibitor. Ym155 potently induces cell death of many types of cancer cells in preclinical studies. However, in phase II clinical trials Ym155 failed to demonstrate a significant benefit. Studies have suggested that the cytotoxic effects of Ym155 in cancer cells are not mediated by the inhibition of survivin. Understanding the mechanism by which Ym155 induces cell death would provide important insight how to improve its efficacy as a cancer therapeutic. We demonstrate a novel mechanism by which Ym155 induces cell death by localizing to the mitochondria causing mitochondrial dysfunction. Our studies suggest that Ym155 binds mitochondrial DNA leading to a decrease in oxidative phosphorylation, decrease in TCA cycle intermediates, and an increase in mitochondrial permeability. Furthermore, we show that mitochondrial stress induced by Ym155 and other mitochondrial inhibitors activates AMP-activated kinase leading to the downregulation to bone morphogenetic protein (BMP) signaling. We provide first evidence that Ym155 initiates cell death by disrupting mitochondrial function.


Assuntos
Antineoplásicos , Imidazóis/farmacologia , Neoplasias Pulmonares , Naftoquinonas/farmacologia , Proteínas Quinases Ativadas por AMP , Antineoplásicos/farmacologia , Apoptose , Proteínas Morfogenéticas Ósseas/metabolismo , Linhagem Celular Tumoral , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Mitocôndrias/metabolismo , Survivina/metabolismo
11.
Antibiotics (Basel) ; 11(5)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35625337

RESUMO

The emergence of multi-drug-resistant Gram-negative pathogens highlights an urgent clinical need to explore and develop new antibiotics with novel antibacterial targets. MreB is a promising antibacterial target that functions as an essential elongasome protein in most Gram-negative bacterial rods. Here, we describe a third-generation MreB inhibitor (TXH11106) with enhanced bactericidal activity versus the Gram-negative pathogens Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa compared to the first- and second-generation compounds A22 and CBR-4830, respectively. Large inocula of these four pathogens are associated with a low frequency of resistance (FOR) to TXH11106. The enhanced bactericidal activity of TXH11106 relative to A22 and CBR-4830 correlates with a correspondingly enhanced capacity to inhibit E. coli MreB ATPase activity via a noncompetitive mechanism. Morphological changes induced by TXH11106 in E. coli, K. pneumoniae, A. baumannii, and P. aeruginosa provide further evidence supporting MreB as the bactericidal target of the compound. Taken together, our results highlight the potential of TXH11106 as an MreB inhibitor with activity against a broad spectrum of Gram-negative bacterial pathogens of acute clinical importance.

12.
Cell Biosci ; 12(1): 76, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641992

RESUMO

BACKGROUND: Bone morphogenetic protein (BMP) is a phylogenetically conserved signaling pathway required for development that is aberrantly expressed in several age-related diseases including cancer, Alzheimer's disease, obesity, and cardiovascular disease. Aberrant BMP signaling in mice leads to obesity, suggesting it may alter normal metabolism. The role of BMP signaling regulating cancer metabolism is not known. METHODS: To examine BMP regulation of metabolism, C. elegans harboring BMP gain-of-function (gof) and loss-of-function (lof) mutations were examined for changes in activity of catabolic and anabolic metabolism utilizing Western blot analysis and fluorescent reporters. AMP activated kinase (AMPK) gof and lof mutants were used to examine AMPK regulation of BMP signaling. H1299 (LKB1 wild-type), A549 (LKB1 lof), and A549-LKB1 (LKB1 restored) lung cancer cell lines were used to study BMP regulation of catabolic and anabolic metabolism. Studies were done using recombinant BMP ligands to activate BMP signaling, and BMP receptor specific inhibitors and siRNA to inhibit signaling. RESULTS: BMP signaling in both C. elegans and cancer cells is responsive to nutrient conditions. In both C. elegans and lung cancer cell lines BMP suppressed AMPK, the master regulator of catabolism, while activating PI3K, a regulator of anabolism. In lung cancer cells, inhibition of BMP signaling by siRNA or small molecules increased AMPK activity, and this increase was mediated by activation of LKB1. BMP2 ligand suppressed AMPK activation during starvation. BMP2 ligand decreased expression of TCA cycle intermediates and non-essential amino acids in H1299 cells. Furthermore, we show that BMP activation of PI3K is mediated through BMP type II receptor. We also observed feedback signaling, as AMPK suppressed BMP signaling, whereas PI3K increased BMP signaling. CONCLUSION: These studies show that BMP signaling suppresses catabolic metabolism and stimulates anabolic metabolism. We identified feedback mechanisms where catabolic induced signaling mediated by AMPK negatively regulates BMP signaling, whereas anabolic signaling produces a positive feedback regulation of BMP signing through Akt. These mechanisms were conserved in both lung cancer cells and C. elegans. These studies suggest that aberrant BMP signaling causes dysregulation of metabolism that is a potential mechanism by which BMP promotes survival of cancer cells.

13.
Microbiol Spectr ; 10(5): e0086222, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36036637

RESUMO

Invasive fungal infections are difficult to treat with limited drug options, mainly because fungi are eukaryotes and share many cellular mechanisms with the human host. Most current antifungal drugs are either fungistatic or highly toxic. Therefore, there is a critical need to identify important fungal specific drug targets for novel antifungal development. Numerous studies have shown the fungal phosphatidylserine (PS) biosynthetic pathway to be a potential target. It is synthesized from CDP-diacylglycerol and serine, and the fungal PS synthesis route is different from that in mammalian cells, in which preexisting phospholipids are utilized to produce PS in a base-exchange reaction. In this study, we utilized a Saccharomyces cerevisiae heterologous expression system to screen for inhibitors of Cryptococcus PS synthase Cho1, a fungi-specific enzyme essential for cell viability. We identified an anticancer compound, bleomycin, as a positive candidate that showed a phospholipid-dependent antifungal effect. Its inhibition on fungal growth can be restored by ethanolamine supplementation. Further exploration of the mechanism of action showed that bleomycin treatment damaged the mitochondrial membrane in yeast cells, leading to increased generation of reactive oxygen species (ROS), whereas supplementation with ethanolamine helped to rescue bleomycin-induced damage. Our results indicate that bleomycin does not specifically inhibit the PS synthase enzyme; however, it may affect phospholipid biosynthesis through disruption of mitochondrial function, namely, the synthesis of phosphatidylethanolamine (PE) and phosphatidylcholine (PC), which helps cells maintain membrane composition and functionality. IMPORTANCE Invasive fungal pathogens cause significant morbidity and mortality, with over 1.5 million deaths annually. Because fungi are eukaryotes that share much of their cellular machinery with the host, our armamentarium of antifungal drugs is highly limited, with only three classes of antifungal drugs available. Drug toxicity and emerging resistance have limited their use. Hence, targeting fungi-specific enzymes that are important for fungal survival, growth, or virulence poses a strategy for novel antifungal development. In this study, we developed a heterologous expression system to screen for chemical compounds with activity against Cryptococcus phosphatidylserine synthase, Cho1, a fungi-specific enzyme that is essential for viability in C. neoformans. We confirmed the feasibility of this screen method and identified a previously unexplored role of the anticancer compound bleomycin in disrupting mitochondrial function and inhibiting phospholipid synthesis.


Assuntos
Antifúngicos , Bleomicina , Cryptococcus neoformans , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Bleomicina/farmacologia , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Cryptococcus neoformans/efeitos dos fármacos , Diglicerídeos de Citidina Difosfato/metabolismo , Etanolaminas/farmacologia , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Serina/metabolismo
14.
Pharmacol Res ; 63(4): 284-93, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21215314

RESUMO

Sodium glucose co-transporter 2 (SGLT2) is a renal type III integral membrane protein that co-transports sodium and glucose from filtrate to epithelium in the proximal tubule. Human subjects with homozygous or compound heterozygous mutations in SLC5A2 exhibit glucosuria without hypoglycemia or other obvious morbidity, suggesting that blockade of SGLT2 has the potential to promote normalization of blood glucose without hypoglycemia in the setting of type 2 diabetes. This report presents the in vitro and in vivo pharmacological activities of EGT1442, a recently discovered SGLT2 inhibitor in the C-aryl glucoside class. The inhibitory effects of EGT1442 for human SGLT1 and SGLT2 were evaluated in an AMG uptake assay and the in vivo efficacy of treatment with EGT1442 was investigated in rats and dogs after a single dose and in db/db mice after chronic administration. The effect of EGT1442 on median survival of SHRSP rats was also evaluated. The IC(50) values for EGT1442 against human SGLT1 and SGLT2 are 5.6µM and 2nM, respectively. In normal rats and dogs a saturable urinary glucose excretion was produced with an ED(50) of 0.38 and 0.09mg/kg, respectively. Following chronic administration to db/db mice, EGT1442 dose-dependently reduced HbA(1c) and blood glucose concentration without affecting body mass or insulin level. Additionally, EGT1442 significantly prolonged the median survival of SHRSP rats. EGT1442 showed favorable properties both in vitro and in vivo and could be beneficial to the management of type 2 diabetic patients.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hemoglobinas Glicadas/metabolismo , Hipertensão/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Glicemia/metabolismo , Cães , Eletrólitos/urina , Teste de Tolerância a Glucose , Glicosúria/tratamento farmacológico , Humanos , Hipoglicemiantes/farmacologia , Masculino , Camundongos , Ratos , Ratos Endogâmicos SHR , Ratos Sprague-Dawley , Transportador 1 de Glucose-Sódio/metabolismo , Transportador 2 de Glucose-Sódio/metabolismo
15.
Bioorg Med Chem Lett ; 21(15): 4465-70, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21737266

RESUMO

A series of C-aryl glucosides with various substituents at the 4'-position of the distal aryl ring have been synthesized and evaluated for inhibition of hSGLT1 and hSGLT2. Introduction of alkyl or alkoxy substituents at the 4'-position was found to improve SGLT2 potency, whereas introduction of a hydrophilic group at this position was deleterious. Compounds with alkoxy-, cycloalkoxy- or cycloalkenyloxy-ethoxy scaffolds exhibited good inhibitory activity and high selectivity toward SGLT2. Selected compounds were investigated for in vivo efficacy.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucosídeos/química , Hipoglicemiantes/química , Inibidores do Transportador 2 de Sódio-Glicose , Glucosídeos/síntese química , Glucosídeos/uso terapêutico , Humanos , Hipoglicemiantes/síntese química , Hipoglicemiantes/uso terapêutico , Transportador 1 de Glucose-Sódio/antagonistas & inibidores , Transportador 1 de Glucose-Sódio/metabolismo , Transportador 2 de Glucose-Sódio/metabolismo , Relação Estrutura-Atividade
16.
J Med Chem ; 64(4): 2024-2045, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33538587

RESUMO

We identified a set of thiosemicarbazone (TSC) metal ion chelators that reactivate specific zinc-deficient p53 mutants using a mechanism called zinc metallochaperones (ZMCs) that restore zinc binding by shuttling zinc into cells. We defined biophysical and cellular assays necessary for structure-activity relationship studies using this mechanism. We investigated an alternative class of zinc scaffolds that differ from TSCs by substitution of the thiocarbamoyl moiety with benzothiazolyl, benzoxazolyl, and benzimidazolyl hydrazones. Members of this series bound zinc with similar affinity and functioned to reactivate mutant p53 comparable to the TSCs. Acute toxicity and efficacy assays in rodents demonstrated C1 to be significantly less toxic than the TSCs while demonstrating equivalent growth inhibition. We identified C85 as a ZMC with diminished copper binding that functions as a chemotherapy and radiation sensitizer. We conclude that the benzothiazolyl, benzoxazolyl, and benzimidazolyl hydrazones can function as ZMCs to reactivate mutant p53 in vitro and in vivo.


Assuntos
Benzotiazóis/uso terapêutico , Benzoxazóis/uso terapêutico , Quelantes/uso terapêutico , Hidrazonas/uso terapêutico , Proteína Supressora de Tumor p53/metabolismo , Zinco/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Benzotiazóis/síntese química , Benzotiazóis/farmacologia , Benzoxazóis/síntese química , Benzoxazóis/farmacologia , Linhagem Celular Tumoral , Quelantes/síntese química , Quelantes/farmacologia , Humanos , Hidrazonas/síntese química , Hidrazonas/farmacologia , Camundongos Nus , Estrutura Molecular , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Med Chem ; 64(20): 15334-15348, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34648707

RESUMO

Ricin toxin A subunit (RTA) is the catalytic subunit of ricin, which depurinates an adenine from the sarcin/ricin loop in eukaryotic ribosomes. There are no approved inhibitors against ricin. We used a new strategy to disrupt RTA-ribosome interactions by fragment screening using surface plasmon resonance. Here, using a structure-guided approach, we improved the affinity and inhibitory activity of small-molecular-weight lead compounds and obtained improved compounds with over an order of magnitude higher efficiency. Four advanced compounds were characterized by X-ray crystallography. They bind at the RTA-ribosome binding site as the original compound but in a distinctive manner. These inhibitors bind remotely from the catalytic site and cause local conformational changes with no alteration of the catalytic site geometry. Yet they inhibit depurination by ricin holotoxin and inhibit the cytotoxicity of ricin in mammalian cells. They are the first agents that protect against ricin holotoxin by acting directly on RTA.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Ribossomos/efeitos dos fármacos , Ricina/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Sítios de Ligação/efeitos dos fármacos , Chlorocebus aethiops , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Modelos Moleculares , Estrutura Molecular , Ricina/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície , Células Vero
19.
Steroids ; 69(3): 201-17, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15072922

RESUMO

The identification of a new series of selective nonsteroidal progesterone receptor (PR) agonists is reported. Using a high-throughput screening assay based on the measurement of transactivation of a mouse mammary tumor virus promoter-driven luciferase reporter (MMTV-Luc) in human breast cancer T47D cells, a benzimidazole-2-thione analog was identified. Compound 1 showed an apparent EC50 of 53 nM and efficacy of 93% with respect to progesterone. It binds to PR with high affinity (Ki nM), but had no or very low affinity for other steroid hormone receptors. Structure-activity relationship studies of a series of benzimidazole-2-thione analogs revealed critical positions for high PR binding affinity and transactivation potency as well as receptor selectivity, as exemplified by 25. Compound 25 binds to human PR with high affinity (Ki nM) and had at least > 1000-fold selectivity for PR versus other steroid receptors. Molecular modeling studies suggested that these agonists overlap favorably with progesterone in the ligand-binding domain of PR. In T47D cells, compound 25 acted as a full agonist in the MMTV-Luc reporter assay, as well as in the induction of endogenous alkaline phosphatase activity with apparent EC50 values of 4 and 9 nM, respectively. In the immature rat model, compound 25 provided a significant suppression of estrogen-induced endometrium hypertrophy as measured by luminal epithelial height. In contrast, compound 25 was inactive in the luteinizing hormone release assay in young ovariectomized rats. These benzimidazole-2-thione analogs constitute a new series of nonsteroidal PR agonists with an excellent steroid receptor selectivity profile. The differential activities observed in the in vivo progestogenic assays in rat models suggest that these analogs can act as selective PR modulators.


Assuntos
Benzimidazóis/farmacologia , Imidazóis/farmacologia , Receptores de Progesterona/agonistas , Relação Estrutura-Atividade , Compostos de Sulfidrila/farmacologia , Animais , Benzimidazóis/síntese química , Benzimidazóis/química , Benzimidazóis/metabolismo , Ligação Competitiva/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Genes Reporter , Humanos , Imidazóis/síntese química , Imidazóis/química , Imidazóis/metabolismo , Hormônio Luteinizante/metabolismo , Acetato de Medroxiprogesterona/metabolismo , Acetato de Medroxiprogesterona/farmacologia , Modelos Moleculares , Conformação Molecular , Progesterona/metabolismo , Progesterona/farmacologia , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Receptores de Progesterona/metabolismo , Compostos de Sulfidrila/síntese química , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo , Ativação Transcricional/efeitos dos fármacos , Útero/efeitos dos fármacos , Útero/metabolismo
20.
J Med Chem ; 57(4): 1236-51, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24456245

RESUMO

SGLT2 inhibitors deuterated at sites susceptible to oxidative metabolism were found to have a slightly longer tmax and half-life (t1/2), dose-dependent increase in urinary glucose excretion (UGE) in rats, and slightly superior effects on UGE in dogs while retaining similar in vitro inhibitory activities against hSGLT2. In particular, deuterated compound 41 has the potential to be a robust long-acting antidiabetic agent.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Glicosídeos/química , Glicosídeos/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Glicosídeos/síntese química , Espectroscopia de Ressonância Magnética , Ratos , Ratos Sprague-Dawley , Transportador 2 de Glucose-Sódio , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA