Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; : e0054824, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864622

RESUMO

Most mature B-cell malignancies originate from the malignant transformation of germinal center (GC) B cells. The GC reaction appears to have a role in malignant transformation, in which a major player of the GC reaction is BCL6, a key regulator of this process. We now demonstrate that BCL6 protein levels were dramatically decreased in Epstein-Barr virus (EBV)-positive lymphoblastoid cell lines and Burkitt's lymphoma cell lines. Notably, BCL6 degradation was significantly enhanced in the presence of both EBNA3C and FBXO11. Furthermore, the amino-terminal domain of EBNA3C, which contains residues 50-100, interacts directly with FBXO11. The expression of EBNA3C and FBXO11 resulted in a significant induction of cell proliferation. Furthermore, BCL6 protein expression levels were regulated by EBNA3C via the Skp Cullin Fbox (SCF)FBXO11 complex, which mediated its ubiquitylation, and knockdown of FBXO11 suppressed the transformation of lymphoblastoid cell lines. These data provide new insights into the function of EBNA3C in B-cell transformation during GC reaction and raise the possibility of developing new targeted therapies against EBV-associated cancers. IMPORTANCE: The novel revelation in our study involves the suppression of BCL6 expression by the essential Epstein-Barr virus (EBV) antigen EBNA3C, shedding new light on our current comprehension of how EBV contributes to lymphomagenesis by impeding the germinal center reaction. It is crucial to note that while several EBV latent proteins are expressed in infected cells, the collaborative mechanisms among these proteins in regulating B-cell development or inducing B-cell lymphoma require additional investigation. Nonetheless, our findings carry significance for the development of emerging strategies aimed at addressing EBV-associated cancers.

3.
J Biomed Sci ; 30(1): 18, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918845

RESUMO

BACKGROUND: Reactivation of Epstein Barr virus (EBV) leads to modulation of the viral and cellular epitranscriptome. N6-methyladenosine (m6A) modification is a type of RNA modification that regulates metabolism of mRNAs. Previous reports demonstrated that m6A modification affects the stability and metabolism of EBV encoded mRNAs. However, the effect of reactivation on reprograming of the cellular mRNAs, and how this contributes to successful induction of lytic reactivation is not known. METHODS: Methylated RNA immunoprecipitation sequencing (MeRIP-seq), transcriptomic RNA sequencing (RNA-seq) and RNA pull-down PCR were used to screen and validate differentially methylated targets. Western blotting, quantitative real-time PCR (RT-qPCR) and immunocytochemistry were used to investigate the expression and localization of different proteins. RNA stability and polysome analysis assays were used to detect the half-lives and translation efficiencies of downstream genes. Insertion of point mutation to disrupt the m6A methylation sites was used to verify the effect of m6A methylation on its stability and expression levels. RESULTS: We report that during EBV reactivation the m6A eraser ALKBH5 is significantly downregulated leading to enhanced methylation of the cellular transcripts DTX4 and TYK2, that results in degradation of TYK2 mRNAs and higher efficiency of translation of DTX4 mRNAs. This resulted in attenuation of IFN signaling that promoted progression of viral lytic replication. Furthermore, inhibition of m6A methylation of these transcripts led to increased production of IFN, and a substantial reduction in viral copy number, which suggests abrogation of lytic viral replication. CONCLUSION: Our findings illuminate the significance of m6A modification in overcoming the innate immune response during EBV reactivation. We now report that during lytic reactivation EBV targets the RNA methylation system of the host to attenuate the innate immune response by suppressing the interferon signaling which facilitates successful lytic replication of the virus.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Humanos , Herpesvirus Humano 4/genética , Infecções por Vírus Epstein-Barr/genética , Ativação Viral/genética , Replicação Viral/genética , RNA
4.
J Virol ; 95(12)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33789996

RESUMO

The hypoxic microenvironment and metabolic reprogramming are two major contributors to the phenotype of oncogenic virus-infected cells. Infection by Kaposi's sarcoma-associated herpesvirus (KSHV) stabilizes hypoxia-inducible factor 1α (HIF1α) and reprograms cellular metabolism. We investigated the comparative transcriptional regulation of all major genes involved in fatty acid and amino acid metabolism in KSHV-positive and -negative cells grown under normoxic or hypoxic conditions. We show a distinct regulation of genes involved in both fatty acid and amino acid metabolism in KSHV-positive cells grown in either normoxic or hypoxic conditions, with a particular focus on genes involved in the acetyl coenzyme A (acetyl-CoA) pathway. The fatty acid binding protein (FABP) family of genes, specifically FABP1, FABP4, and FABP7, was also observed to be synergistically upregulated in hypoxia by KSHV. This pattern of FABP gene expression was also seen in naturally infected KSHV BC3 or BCBL1 cells when compared to KSHV-negative DG75 or BL41 cells. Two KSHV-encoded antigens, which positively regulate HIF1α, the viral G-protein coupled receptor (vGPCR), and the latency-associated nuclear antigen (LANA) were shown to drive upregulation of the FABP gene transcripts. Suppression of FABPs by RNA interference resulted in an adverse effect on hypoxia-dependent viral reactivation. Overall, this study provides new evidence, which supports a rationale for the inhibition of FABPs in KSHV-positive cells as potential strategies, for the development of therapeutic approaches targeting KSHV-associated malignancies.IMPORTANCE Hypoxia is a detrimental stress to eukaryotes and inhibits several cellular processes, such as DNA replication, transcription, translation, and metabolism. Interestingly, the genome of Kaposi's sarcoma-associated herpesvirus (KSHV) is known to undergo productive replication in hypoxia. We investigated the comparative transcriptional regulation of all major genes involved in fatty acid and amino acid metabolism in KSHV-positive and -negative cells grown under normoxic or hypoxic conditions. Several metabolic pathways were observed differentially regulated by KSHV in hypoxia, specifically, the fatty acid binding protein (FABP) family genes (FABP1, FABP4, and FABP7). KSHV-encoded antigens, vGPCR and LANA, were shown to drive upregulation of the FABP transcripts. Suppression of FABPs by RNA interference resulted in an adverse effect on hypoxia-dependent viral reactivation. Overall, this study provides new evidence, which supports a rationale for the inhibition of FABPs in KSHV-positive cells as potential strategies, for the development of therapeutic approaches targeting KSHV-associated malignancies.


Assuntos
Hipóxia Celular , Proteína 7 de Ligação a Ácidos Graxos/genética , Proteínas de Ligação a Ácido Graxo/genética , Herpesvirus Humano 8/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas Supressoras de Tumor/genética , Aminoácidos/metabolismo , Antígenos Virais/genética , Antígenos Virais/metabolismo , Linhagem Celular Tumoral , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Interferência de RNA , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Ativação Viral
5.
PLoS Pathog ; 16(2): e1008105, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32092124

RESUMO

Epstein-Barr virus (EBV) nuclear oncoprotein EBNA3C is essential for B-cell transformation and development of several B-cell lymphomas particularly those are generated in an immuno-compromised background. EBNA3C recruits ubiquitin-proteasome machinery for deregulating multiple cellular oncoproteins and tumor suppressor proteins. Although EBNA3C is found to be ubiquitinated at its N-terminal region and interacts with 20S proteasome, the viral protein is surprisingly stable in growing B-lymphocytes. EBNA3C can also circumvent autophagy-lysosomal mediated protein degradation and subsequent antigen presentation for T-cell recognition. Recently, we have shown that EBNA3C enhances autophagy, which serve as a prerequisite for B-cell survival particularly under growth deprivation conditions. We now demonstrate that proteasomal inhibition by MG132 induces EBNA3C degradation both in EBV transformed B-lymphocytes and ectopic-expression systems. Interestingly, MG132 treatment promotes degradation of two EBNA3 family oncoproteins-EBNA3A and EBNA3C, but not the viral tumor suppressor protein EBNA3B. EBNA3C degradation induced by proteasomal inhibition is partially blocked when autophagy-lysosomal pathway is inhibited. In response to proteasomal inhibition, EBNA3C is predominantly K63-linked polyubiquitinated, colocalized with the autophagy-lysosomal fraction in the cytoplasm and participated within p62-LC3B complex, which facilitates autophagy-mediated degradation. We further show that the degradation signal is present at the first 50 residues of the N-terminal region of EBNA3C. Proteasomal inhibition reduces the colony formation ability of this important viral oncoprotein, induces apoptotic cell death and increases transcriptional activation of both latent and lytic gene expression which further promotes viral reactivation from EBV transformed B-lymphocytes. Altogether, this study offers rationale to use proteasome inhibitors as potential therapeutic strategy against multiple EBV associated B-cell lymphomas, where EBNA3C is expressed.


Assuntos
Morte Celular Autofágica/efeitos dos fármacos , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Leupeptinas/farmacologia , Lisossomos/metabolismo , Proteínas Oncogênicas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Proteólise/efeitos dos fármacos , Animais , Antígenos Nucleares do Vírus Epstein-Barr/genética , Células HEK293 , Herpesvirus Humano 4/genética , Humanos , Lisossomos/genética , Camundongos , Proteínas Oncogênicas/genética , Complexo de Endopeptidases do Proteassoma/genética
6.
PLoS Pathog ; 16(3): e1008447, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32176739

RESUMO

Latent Epstein-Barr virus (EBV) infection is strongly associated with several malignancies, including B-cell lymphomas and epithelial tumors. EBNA1 is a key antigen expressed in all EBV-associated tumors during latency that is required for maintenance of the EBV episome DNA and the regulation of viral gene transcription. However, the mechanism utilized by EBV to maintain latent infection at the levels of posttranslational regulation remains largely unclear. Here, we report that EBNA1 contains two SUMO-interacting motifs (SIM2 and SIM3), and mutation of SIM2, but not SIM3, dramatically disrupts the EBNA1 dimerization, while SIM3 contributes to the polySUMO2 modification of EBNA1 at lysine 477 in vitro. Proteomic and immunoprecipitation analyses further reveal that the SIM3 motif is required for the EBNA1-mediated inhibitory effects on SUMO2-modified STUB1, SUMO2-mediated degradation of USP7, and SUMO1-modified KAP1. Deletion of the EBNASIM motif leads to functional loss of both EBNA1-mediated viral episome maintenance and lytic gene silencing. Importantly, hypoxic stress induces the SUMO2 modification of EBNA1, and in turn the dissociation of EBNA1 with STUB1, KAP1 and USP7 to increase the SUMO1 modification of both STUB1 and KAP1 for reactivation of lytic replication. Therefore, the EBNA1SIM motif plays an essential role in EBV latency and is a potential therapeutic target against EBV-associated cancers.


Assuntos
Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/fisiologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Latência Viral/fisiologia , Motivos de Aminoácidos , Linhagem Celular , Antígenos Nucleares do Vírus Epstein-Barr/genética , Humanos , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteína 28 com Motivo Tripartido/genética , Proteína 28 com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Peptidase 7 Específica de Ubiquitina/genética , Peptidase 7 Específica de Ubiquitina/metabolismo
7.
BMC Infect Dis ; 22(1): 95, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35086475

RESUMO

BACKGROUND: The variation of human papillomavirus (HPV) genotypes shapes the risks of cervical cancer and these variations are not well defined in Africa. Nucleotide changes within the L1 gene, nucleotide variability, and phylogeny were explored in relation to HIV in samples from Botswana and Kenya. METHODS: A total of 98 HPV-positive cervical samples were sequenced to identify different HPV variants. Phylogenetic inferences were used to determine HPV genotypes and investigate the clustering of sequences between women living with HIV (WLWHIV) and -women not living with HIV (WNLWHIV). RESULTS: Out of 98 generated sequences, 83.7% (82/98) participants had high-risk (HR) HPV genotypes while 16.3% (16/98) had low-risk (LR) HPV genotypes. Among participants with HR-HPV genotypes, 47.6% (39/82) were coinfected with HIV. The prevalence of HR-HPV genotypes was statistically higher in the Botswana population compared to Kenya (p-value < 0.001). Multiple amino acid mutations were identified in both countries. Genetic diversity differed considerably among WLWHIV and WNLWHIV. The mean pairwise distances between HPV-16 between HIV and HIV/HPV as well as for HPV-18 were statistically significant. Six (6) new deleterious mutations were identified in the HPV genotypes based on the sequencing of the L1 region, HPV-16 (L441P, S343P), HPV-18 (S424P), HPV-45 (Q366H, Y365F), and HPV-84 (F458L). The majority of the patients with these mutations were co-infected with HIV. CONCLUSIONS: Genomic diversity and different genomic variants of HPV sequences were demonstrated. Candidate novel mutations within the L1 gene were identified in both countries which can be further investigated using functional assays.


Assuntos
Alphapapillomavirus , Infecções por HIV , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Botsuana/epidemiologia , Feminino , Variação Genética , Genótipo , HIV , Infecções por HIV/complicações , Infecções por HIV/epidemiologia , Humanos , Quênia/epidemiologia , Papillomaviridae/genética , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/epidemiologia , Filogenia , Neoplasias do Colo do Útero/epidemiologia
8.
J Virol ; 94(22)2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-32847849

RESUMO

Epstein-Barr virus (EBV) was discovered as the first human tumor virus more than 50 years ago. EBV infects more than 90% of the human population worldwide and is associated with numerous hematologic malignancies and epithelial malignancies. EBV establishes latent infection in B cells, which is the typical program seen in lymphomagenesis. Understanding EBV-mediated transcription regulatory networks is one of the current challenges that will uncover new insights into the mechanism of viral-mediated lymphomagenesis. Here, we describe the regulatory profiles of several cellular factors (E2F6, E2F1, Rb, HDAC1, and HDAC2) together with EBV latent nuclear antigens using next-generation sequencing (NGS) analysis. Our results show that the E2F-Rb-HDAC complex exhibits similar distributions in genomic regions of EBV-positive cells and is associated with oncogenic super-enhancers involving long-range regulatory regions. Furthermore, EBV latent antigens cooperatively hijack this complex to bind at KLFs gene loci and facilitate KLF14 gene expression in lymphoblastoid cell lines (LCLs). These results demonstrate that EBV latent antigens can function as master regulators of this multisubunit repressor complex (E2F-Rb-HDAC) to reverse its suppressive activities and facilitate downstream gene expression that can contribute to viral-induced lymphomagenesis. These results provide novel insights into targets for the development of new therapeutic interventions for treating EBV-associated lymphomas.IMPORTANCE Epstein-Barr virus (EBV), as the first human tumor virus, infects more than 90% of the human population worldwide and is associated with numerous human cancers. Exploring EBV-mediated transcription regulatory networks is critical to understand viral-associated lymphomagenesis. However, the detailed mechanism is not fully explored. Now we describe the regulatory profiles of the E2F-Rb-HDAC complex together with EBV latent antigens, and we found that EBV latent antigens cooperatively facilitate KLF14 expression by antagonizing this multisubunit repressor complex in EBV-positive cells. This provides potential therapeutic targets for the treatment of EBV-associated cancers.


Assuntos
Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Linfócitos B/virologia , Linhagem Celular , Fator de Transcrição E2F1 , Fator de Transcrição E2F6 , Antígenos Nucleares do Vírus Epstein-Barr , Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/patogenicidade , Histona Desacetilase 1 , Histona Desacetilase 2 , Humanos , Infecção Latente , Proteína do Retinoblastoma , Proteínas Virais/metabolismo , Latência Viral
9.
PLoS Pathog ; 15(6): e1007796, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31226160

RESUMO

Epstein-Barr virus (EBV) is a ubiquitous oncogenic virus that induces many cancers. N6-Methyladenosine (m6A) modification regulates many cellular processes. We explored the role of m6A in EBV gene regulation and associated cancers. We have comprehensively defined m6A modification of EBV latent and lytic transcripts. Furthermore, m6A modification demonstrated a functional role in regulation of the stability of viral transcripts. The methyltransferase METTL14 was induced at the transcript and protein levels, and knock-down of METTL14 led to decreased expression of latent EBV transcripts. METTL14 was also significantly induced in EBV-positive tumors, promoted growth of EBV-transformed cells and tumors in Xenograft animal models. Mechanistically, the viral-encoded latent oncoprotein EBNA3C activated transcription of METTL14, and directly interacted with METTL14 to promote its stability. This demonstrated that EBV hijacks METTL14 to drive EBV-mediated tumorigenesis. METTL14 is now a new target for development of therapeutics for treatment of EBV-associated cancers.


Assuntos
Transformação Celular Viral , Infecções por Vírus Epstein-Barr/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/metabolismo , Metiltransferases/biossíntese , Proteínas de Neoplasias/biossíntese , Neoplasias/metabolismo , Adenosina/análogos & derivados , Adenosina/genética , Adenosina/metabolismo , Animais , Linhagem Celular Tumoral , Infecções por Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Células HEK293 , Humanos , Masculino , Metiltransferases/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Neoplasias/virologia
10.
PLoS Pathog ; 15(4): e1007732, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30964921

RESUMO

[This corrects the article DOI: 10.1371/journal.ppat.1007253.].

11.
PLoS Pathog ; 15(9): e1008025, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31479497

RESUMO

Kaposi's sarcoma associated herpesvirus (KSHV), like all herpesviruses maintains lifelong persistence with its host genome in latently infected cells with only a small fraction of cells showing signatures of productive lytic replication. Modulation of cellular signaling pathways by KSHV-encoded latent antigens, and microRNAs, as well as some level of spontaneous reactivation are important requirements for establishment of viral-associated diseases. Hypoxia, a prominent characteristic of the microenvironment of cancers, can exert specific effects on cell cycle control, and DNA replication through HIF1α-dependent pathways. Furthermore, hypoxia can induce lytic replication of KSHV. The mechanism by which KSHV-encoded RNAs and antigens regulate cellular and viral replication in the hypoxic microenvironment has yet to be fully elucidated. We investigated replication-associated events in the isogenic background of KSHV positive and negative cells grown under normoxic or hypoxic conditions and discovered an indispensable role of KSHV for sustained cellular and viral replication, through protection of critical components of the replication machinery from degradation at different stages of the process. These include proteins involved in origin recognition, pre-initiation, initiation and elongation of replicating genomes. Our results demonstrate that KSHV-encoded LANA inhibits hypoxia-mediated degradation of these proteins to sustain continued replication of both host and KSHV DNA. The present study provides a new dimension to our understanding of the role of KSHV in survival and growth of viral infected cells growing under hypoxic conditions and suggests potential new strategies for targeted treatment of KSHV-associated cancer.


Assuntos
Antígenos Virais/metabolismo , Respiração Celular/fisiologia , Herpesvirus Humano 8/metabolismo , Proteínas Nucleares/metabolismo , Antígenos Virais/genética , Antígenos Virais/imunologia , Linhagem Celular Tumoral , Herpesvirus Humano 8/patogenicidade , Humanos , Hipóxia/metabolismo , Proteínas Nucleares/imunologia , Sarcoma de Kaposi/virologia , Microambiente Tumoral , Latência Viral/genética , Replicação Viral/genética
12.
PLoS Pathog ; 15(1): e1007514, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30615685

RESUMO

EBV latent antigen 3C (EBNA3C) is essential for EBV-induced primary B-cell transformation. Infection by EBV induces hypermethylation of a number of tumor suppressor genes, which contributes to the development of human cancers. The Ras association domain family isoform 1A (RASSF1A) is a cellular tumor suppressor, which regulates a broad range of cellular functions, including apoptosis, cell-cycle arrest, mitotic arrest, and migration. However, the expression of RASSF1A is lost in many human cancers by epigenetic silencing. In the present study, we showed that EBNA3C promoted B-cell transformation by specifically suppressing the expression of RASSF1A. EBNA3C directly interacted with RASSF1A and induced RASSF1A degradation via the ubiquitin-proteasome-dependent pathway. SCFSkp2, an E3-ubiquitin ligase, was recruited by EBNA3C to enhance RASSF1A degradation. Moreover, EBNA3C decreased the transcriptional activity of RASSF1A promoter by enhancing its methylation through EBNA3C-mediated modulation of DNMTs expression. EBNA3C also inhibited RASSF1A-mediated cell apoptosis, disrupted RASSF1A-mediated microtubule and chromosomal stability, and promoted cell proliferation by upregulating Cyclin D1 and Cyclin E expression. Our data provides new details, which sheds light on additional mechanisms by which EBNA3C can induce B-cell transformation. This will also facilitate the development of novel therapeutic approaches through targeting of the RASSF1A pathway.


Assuntos
Infecções por Vírus Epstein-Barr/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Proteínas Supressoras de Tumor/genética , Antígenos Virais/genética , Apoptose , Linfócitos B/metabolismo , Linfócitos B/virologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Viral/genética , Metilação de DNA/genética , Regulação para Baixo , Epigênese Genética/genética , Infecções por Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/genética , Regulação da Expressão Gênica/genética , Células HEK293 , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Humanos , Ativação Linfocitária/genética , Regiões Promotoras Genéticas/genética , Proteínas Supressoras de Tumor/metabolismo
13.
PLoS Pathog ; 15(1): e1007489, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30682185

RESUMO

The molecular basis for the formation of functional, higher-ordered macro-molecular domains is not completely known. The Kaposi's Sarcoma-Associated Herpesvirus (KSHV) genome forms a super-molecular domain structure during latent infection that is strictly dependent on the DNA binding of the viral nuclear antigen LANA to the viral terminal repeats (TR). LANA is known to form oligomeric structures that have been implicated in viral episome maintenance. In this study, we show that the LANA oligomerization interface is required for the formation of higher-order nuclear bodies that partially colocalize with DAXX, EZH2, H3K27me3, and ORC2 but not with PML. These nuclear bodies assemble at the periphery of condensed cellular chromosomes during mitotic cell division. We demonstrate that the LANA oligomerization interface contributes to the cooperative DNA binding at the viral TR and the recruitment of ORC to the viral episome. Oligomerization mutants failed to auto-regulate LANA/ORF73 transcription, and this correlated with the loss of a chromosome conformational DNA-loop between the TR and LANA promoter. Viral genomes with LANA oligomerization mutants were subject to genome rearrangements including the loss of subgenomic DNA. Our data suggests that LANA oligomerization drives stable binding to the TR and formation of an epigenetically stable chromatin architecture resulting in higher-order LANA nuclear bodies important for viral genome integrity and long-term episome persistence.


Assuntos
Antígenos Virais/metabolismo , Herpesvirus Humano 8/metabolismo , Herpesvirus Humano 8/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Antígenos Virais/genética , Linhagem Celular , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromossomos/metabolismo , Proteínas Correpressoras , Replicação do DNA , DNA Viral/genética , Proteína Potenciadora do Homólogo 2 de Zeste , Genoma Viral , Herpesvirus Humano 8/genética , Humanos , Corpos de Inclusão Intranuclear/metabolismo , Chaperonas Moleculares , Proteínas Nucleares/genética , Complexo de Reconhecimento de Origem , Sequências Repetidas Terminais , Latência Viral/genética
14.
Int J Gynecol Cancer ; 31(9): 1220-1227, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34312220

RESUMO

OBJECTIVE: Cervical cancer remains the most common cancer among women in sub-Saharan Africa and is also a leading cause of cancer related deaths among these women. The benefit of chemoradiation in comparison with radiation alone for patients with stage IIIB disease has not been evaluated prospectively in women living with human immunodeficiency virus (HIV). We assessed the survival of chemoradiation versus radiation alone among stage IIIB cervical cancer patients based on HIV status. METHODS: Between February 2013 and June 2018, patients with International Federation of Gynecology and Obstetrics (FIGO) 2009 stage IIIB cervical cancer with or without HIV and treated with chemoradiation or radiation alone, were prospectively enrolled in an observational cohort study. Overall survival was evaluated using the Kaplan-Meier method. Cox proportional hazards modeling was used to analyze associations with survival. RESULTS: Among 187 patients, 63% (n=118) of women had co-infection with HIV, and 48% (n=69) received chemoradiation. Regardless of HIV status, patients who received chemoradiation had improved 2 year overall survival compared with those receiving radiation alone (59% vs 41%, p<0.01), even among women living with HIV (60% vs 38%, p=0.02). On multivariable Cox regression analysis, including all patients regardless of HIV status, 2 year overall survival was associated with receipt of chemoradiation (hazard ratio (HR) 0.63, p=0.04) and total radiation dose ≥80 Gy (HR 0.57, p=0.02). Among patients who received an adequate radiation dose of ≥80 Gy, adjusted overall survival rates were similar between chemoradiation versus radiation alone groups (HR 1.07; p=0.90). However, patients who received an inadequate radiation dose of <80 Gy, adjusted survival was significantly higher in chemoradiation versus radiation alone group (HR 0.45, p=0.01). CONCLUSIONS: Addition of chemotherapy to standard radiation improved overall survival, regardless of HIV status, and is even more essential in women who cannot receive full doses of radiation.


Assuntos
Quimiorradioterapia/métodos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/radioterapia , Neoplasias do Colo do Útero/tratamento farmacológico , Adulto , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Análise de Sobrevida , Neoplasias do Colo do Útero/mortalidade
15.
J Virol ; 93(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30971472

RESUMO

Epstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus which asymptomatically infects the majority of the world population. Under immunocompromised conditions, EBV can trigger human cancers of epithelial and lymphoid origin. The oncogenic potential of EBV is demonstrated by in vitro infection and transformation of quiescent B cells into lymphoblastoid cell lines (LCLs). These cell lines, along with primary infection using genetically engineered viral particles coupled with recent technological advancements, have elucidated the underlying mechanisms of EBV-induced B-cell lymphomagenesis.


Assuntos
Linfócitos B/virologia , Carcinogênese , Herpesvirus Humano 4/genética , Linfoma de Células B/virologia , Linhagem Celular , Transformação Celular Viral , Infecções por Vírus Epstein-Barr/virologia , Antígenos Nucleares do Vírus Epstein-Barr/genética , Regulação Viral da Expressão Gênica , Humanos , Hospedeiro Imunocomprometido , Linfoma de Células B/genética , Neoplasias , RNA não Traduzido , Latência Viral
16.
PLoS Pathog ; 14(9): e1007253, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30212568

RESUMO

Shugoshin-1 (Sgo1) protects the integrity of the centromeres, and H2A phosphorylation is critical for this process. The mitotic checkpoint kinase Bub1, phosphorylates H2A and ensures fidelity of chromosome segregation and chromosome number. Oncogenic KSHV induces genetic alterations through chromosomal instability (CIN), and its essential antigen LANA regulates Bub1. We show that LANA inhibits Bub1 phosphorylation of H2A and Cdc20, important for chromosome segregation and mitotic signaling. Inhibition of H2A phosphorylation at residue T120 by LANA resulted in dislocation of Sgo1, and cohesin from the centromeres. Arrest of Cdc20 phosphorylation also rescued degradation of Securin and Cyclin B1 at mitotic exit, and interaction of H2A, and Cdc20 with Bub1 was inhibited by LANA. The N-terminal nuclear localization sequence domain of LANA was essential for LANA and Bub1 interaction, reversed LANA inhibited phosphorylation of H2A and Cdc20, and attenuated LANA-induced aneuploidy and cell proliferation. This molecular mechanism whereby KSHV-induced CIN, demonstrated that the NNLS of LANA is a promising target for development of anti-viral therapies targeting KSHV associated cancers.


Assuntos
Aneuploidia , Antígenos Virais/genética , Antígenos Virais/metabolismo , Proteínas de Ciclo Celular/metabolismo , Herpesvirus Humano 8/imunologia , Herpesvirus Humano 8/patogenicidade , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Antígenos Virais/química , Proteínas Cdc20/metabolismo , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Centrômero/metabolismo , Instabilidade Cromossômica , Ciclina B1/metabolismo , Herpesvirus Humano 8/genética , Histonas/metabolismo , Humanos , Mitose , Modelos Biológicos , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Proteínas Nucleares/química , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteólise , Securina/metabolismo
17.
PLoS Pathog ; 14(5): e1007062, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29746587

RESUMO

Kaposi's sarcoma associated herpesvirus (KSHV) infection stabilizes hypoxia inducible factors (HIFs). The interaction between KSHV encoded factors and HIFs plays a critical role in KSHV latency, reactivation and associated disease phenotypes. Besides modulation of large-scale signaling, KSHV infection also reprograms the metabolic activity of infected cells. However, the mechanism and cellular pathways modulated during these changes are poorly understood. We performed comparative RNA sequencing analysis on cells with stabilized hypoxia inducible factor 1 alpha (HIF1α) of KSHV negative or positive background to identify changes in global and metabolic gene expression. Our results show that hypoxia induces glucose dependency of KSHV positive cells with high glucose uptake and high lactate release. We identified the KSHV-encoded vGPCR, as a novel target of HIF1α and one of the main viral antigens of this metabolic reprogramming. Bioinformatics analysis of vGPCR promoter identified 9 distinct hypoxia responsive elements which were activated by HIF1α in-vitro. Expression of vGPCR alone was sufficient for induction of changes in the metabolic phenotype similar to those induced by KSHV under hypoxic conditions. Silencing of HIF1α rescued the hypoxia associated phenotype of KSHV positive cells. Analysis of the host transcriptome identified several common targets of hypoxia as well as KSHV encoded factors and other synergistically activated genes belonging to cellular pathways. These include those involved in carbohydrate, lipid and amino acids metabolism. Further DNA methyltranferases, DNMT3A and DNMT3B were found to be regulated by either KSHV, hypoxia, or both synergistically at the transcript and protein levels. This study showed distinct and common, as well as synergistic effects of HIF1α and KSHV-encoded proteins on metabolic reprogramming of KSHV-infected cells in the hypoxia.


Assuntos
Linfócitos B/virologia , Herpesvirus Humano 8/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Linfócitos B/metabolismo , Western Blotting , Regulação Viral da Expressão Gênica , Glucose/metabolismo , Herpesvirus Humano 8/genética , Humanos , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/análise , Ácido Láctico/metabolismo , Leucócitos Mononucleares/virologia , Metaboloma , Microscopia Confocal , Fenótipo , Regiões Promotoras Genéticas , RNA Viral/química , Espécies Reativas de Oxigênio/análise , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Análise de Sequência de RNA , Ativação Transcricional
18.
PLoS Pathog ; 14(12): e1007416, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30532138

RESUMO

Aberrations in STAT6-mediated signaling are linked to the development of multiple cancer types. Increasing evidence has shown that activation of human oncogenic herpesvirus lytic replication is crucial for viral tumorigenesis. However, the role of STAT6 in herpesvirus lytic replication remains elusive. Here, by using Kaposi's sarcoma-associated herpesvirus (KSHV) as a model, we revealed that RTA, the master regulator of lytic replication, interacts with STAT6 and promotes lysine 48 (K48) and K63-linked ubiquitylation of STAT6 for degradation via the proteasome and lysosome systems. Moreover, degradation of STAT6 is dramatically associated with the increased ubiquitylated form of tripartite motif family like 2 (TRIML2, a tumor suppressor) for prolonged cell survival and virion production, which is also commonly observed in lytic activation of Epstein-Barr virus, herpes simplex virus 1 and cytomegalovirus. These results suggest that degradation of STAT6 is important for the lytic activation of KSHV and as such, may be an attractive therapeutic target.


Assuntos
Proteínas de Transporte/metabolismo , Infecções por Herpesviridae/metabolismo , Herpesvirus Humano 8/metabolismo , Fator de Transcrição STAT6/metabolismo , Ativação Viral/fisiologia , Linhagem Celular , Humanos , Ubiquitinação , Latência Viral/fisiologia
19.
Bioorg Med Chem Lett ; 30(23): 127553, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32971261

RESUMO

Brusatol, a quassinoid natural product, is effective against multiple diseases including hematologic malignancies, as we reported recently by targeting the PI3Kγ isoform, but toxicity limits its further development. Herein, we report the synthesis of a series of conjugates of brusatol with amino acids and short peptides at its enolic hydroxyl at C-3. A number of conjugates with smaller amino acids and peptides demonstrated activities comparable to brusatol. Through in vitro and in vivo evaluations, we identified UPB-26, a conjugate of brusatol with a L- ß-homoalanine, which exhibits good chemical stability at physiological pH's (SGF and SIF), moderate rate of conversion to brusatol in both human and rat plasmas, improved mouse liver microsomal stability, and most encouragingly, enhanced safety compared to brusatol in mice upon IP administration.


Assuntos
Aminobutiratos/farmacologia , Antineoplásicos/farmacologia , Quassinas/farmacologia , Aminobutiratos/síntese química , Aminobutiratos/metabolismo , Aminobutiratos/toxicidade , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Quassinas/síntese química , Quassinas/metabolismo , Quassinas/toxicidade , Ratos , Relação Estrutura-Atividade
20.
Carcinogenesis ; 40(6): 749-764, 2019 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-30794288

RESUMO

We have established a microbiome signature for prostate cancer using an array-based metagenomic and capture-sequencing approach. A diverse microbiome signature (viral, bacterial, fungal and parasitic) was observed in the prostate cancer samples compared with benign prostate hyperplasia controls. Hierarchical clustering analysis identified three distinct prostate cancer-specific microbiome signatures. The three signatures correlated with different grades, stages and scores of the cancer. Thus, microbiome signature analysis potentially provides clinical diagnosis and outcome predictions. The array data were validated by PCR and targeted next-generation sequencing (NGS). Specific NGS data suggested that certain viral genomic sequences were inserted into the host somatic chromosomes of the prostate cancer samples. A randomly selected group of these was validated by direct PCR and sequencing. In addition, PCR validation of Helicobacter showed that Helicobacter cagA sequences integrated within specific chromosomes of prostate tumor cells. The viral and Helicobacter integrations are predicted to affect the expression of several cellular genes associated with oncogenic processes.


Assuntos
Microbiota , Neoplasias da Próstata/microbiologia , Cromossomos Humanos , Análise por Conglomerados , Helicobacter/isolamento & purificação , Herpesvirus Humano 8/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Hibridização de Ácido Nucleico , Papillomaviridae/genética , Reação em Cadeia da Polimerase/métodos , Neoplasias da Próstata/virologia , Reprodutibilidade dos Testes , Integração Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA