Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Infect Immun ; 90(4): e0053221, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35357220

RESUMO

Urinary tract infection (UTI) is one of the most prevalent bacterial infections, particularly in women, children, and the elderly. Uropathogenic Escherichia coli (UPEC) is the predominant etiological agent of UTI. Uropathogens are directly instilled in the urinary bladder, bypassing the lower urogenital tract, in the widely used murine model of UTI. We assessed whether vaginal inoculation of UPEC led to UTI and how stages of the estrous cycle would impact bacterial colonization in mice. Mice in proestrus, estrus, metestrus, and diestrus were identified by vaginal cytology and inoculated with UPEC in the vaginal tract. Mice were euthanized 1 day after infection, and bacterial loads in the urogenital tract, liver, and spleen were enumerated. Mice in estrus exhibited the highest and most consistent UPEC burdens in all organs, except the bladder. Vaginal inoculation resulted in bladder colonization in a UPEC strain-specific manner. In contrast, transurethral inoculation of UPEC led to bladder colonization. Importantly, inoculation by both routes led to vaginal and uterine colonization and concomitant systemic dissemination to the spleen and liver. The kinetics of bacterial colonization over 2 weeks following vaginal inoculation was comparable in the urogenital tract. Tissue sections revealed the induction of vaginitis and cystitis upon the vaginal instillation of UPEC. In summary, vaginal inoculation of UPEC in mice during estrus represents a novel approach to investigate infection of the kidneys and genital tract and systemic dissemination from the urogenital tract. Our findings suggest that estrogen primes the urogenital tract to create a conducive milieu for UPEC colonization.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Idoso , Animais , Infecções por Escherichia coli/microbiologia , Estro , Feminino , Genitália , Humanos , Rim/microbiologia , Masculino , Camundongos , Infecções Urinárias/microbiologia
2.
Comp Med ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902006

RESUMO

Malaria is a parasitic disease caused by protozoan species of the genus Plasmodium and transmitted by female mosquitos of the genus Anopheles and other Culicidae. Most of the parasites of the genus Plasmodium are highly species specific with more than 200 species described affecting different species of mammals, birds, and reptiles. Plasmodium species strictly affecting humans are P. falciparum, P. vivax, P. ovale, and P. malariae. More recently, P. knowlesi and other nonhuman primate plasmodia were found to naturally infect humans. Currently, malaria occurs mostly in poor tropical and subtropical areas of the world, and in many of these countries it is the leading cause of illness and death. For more than 100 y, animal models, have played a major role in our understanding of malaria biology. Avian Plasmodium species were the first to be used as models to study human malaria. Malaria parasite biology and immunity were first studied using mainly P. gallinaceum and P. relictum. Rodent malarias, particularly P. berghei and P. yoelii, have been used extensively as models to study malaria in mammals. Several species of Plasmodium from nonhuman primates have been used as surrogate models to study human malaria immunology, pathogenesis, candidate vaccines, and treatments. Plasmodium cynomolgi, P. simiovale, and P. fieldi are important models for studying malaria produced by P. vivax and P. ovale, while P. coatneyi is used as a model for studying severe malaria. Other nonhuman primate malarias used in research are P. fragile, P. inui, P. knowlesi, P. simium, and P. brasilianum. Very few nonhuman primate species can develop an infection with human malarias. Macaques in general are resistant to infection with P. falciparum, P. vivax, P. malariae, and P. ovale. Only apes and a few species of New World monkeys can support infection with human malarias. Herein we review the most common, and some less common, avian, reptile, and mammal plasmodia species used as models to study human malaria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA