Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Nano Lett ; 23(7): 2792-2799, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37010816

RESUMO

Engineering the transition metal dichalcogenide (TMD)-metal interface is critical for the development of two-dimensional semiconductor devices. By directly probing the electronic structures of WS2-Au and WSe2-Au interfaces with high spatial resolution, we delineate nanoscale heterogeneities in the composite systems that give rise to local Schottky barrier height modulations. Photoelectron spectroscopy reveals large variations (>100 meV) in TMD work function and binding energies for the occupied electronic states. Characterization of the composite systems with electron backscatter diffraction and scanning tunneling microscopy leads us to attribute these heterogeneities to differing crystallite orientations in the Au contact, suggesting an inherent role of the metal microstructure in contact formation. We then leverage our understanding to develop straightforward Au processing techniques to form TMD-Au interfaces with reduced heterogeneity. Our findings illustrate the sensitivity of TMDs' electronic properties to metal contact microstructure and the viability of tuning the interface through contact engineering.

2.
Nano Lett ; 20(11): 8312-8318, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33079555

RESUMO

Near-infrared-to-visible second harmonic generation from air-stable two-dimensional polar gallium and indium metals is described. The photonic properties of 2D metals, including the largest second-order susceptibilities reported for metals (approaching 10 nm/V), are determined by the atomic-level structure and bonding of two-to-three-atom-thick crystalline films. The bond character evolved from covalent to metallic over a few atomic layers, changing the out-of-plane metal-metal bond distances by approximately ten percent (0.2 Å), resulting in symmetry breaking and an axial electrostatic dipole that mediated the large nonlinear response. Two different orientations of the crystalline metal atoms, corresponding to lateral displacements <2 Å, persisted in separate micrometer-scale terraces to generate distinct harmonic polarizations. This strong atomic-level structure-property interplay suggests metal photonic properties can be controlled with atomic precision.

3.
Langmuir ; 33(48): 13749-13756, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29120637

RESUMO

We show that dehydrogenation of hydrogenated graphene proceeds much more slowly for bilayer systems than for single layer systems. We observe that an underlayer of either pristine or hydrogenated graphene will protect an overlayer of hydrogenated graphene against a number of chemical oxidants, thermal dehydrogenation, and degradation in an ambient environment over extended periods of time. Chemical protection depends on the ease of oxidant intercalation, with good intercalants such as Br2 demonstrating much higher reactivity than poor intercalants such as 1,2-dichloro-4,5-dicyanonbenzoquinone (DDQ). Additionally, the rate of dehydrogenation of hydrogenated graphene at 300 °C in H2/Ar was reduced by a factor of roughly 10 in the presence of a protective underlayer of graphene or hydrogenated graphene. Finally, the slow dehydrogenation of hydrogenated graphene in air at room temperature, which is normally apparent after a week, could be completely eliminated in samples with protective underlayers over the course of 39 days. Such protection will be critical for ensuring the long-term stability of devices made from functionalized graphene.

4.
Nanotechnology ; 28(29): 295701, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28557804

RESUMO

Many applications of graphene can benefit from the enhanced mechanical robustness of graphene-based components. We report how the stiffness of vertical graphene (VG) sheets is affected by the introduction of defects and fluorination, both separately and combined. The defects were created using a high-energy ion beam while fluorination was performed in a XeF2 etching system. After ion bombardment alone, the average effective reduced modulus (E r), equal to ∼4.9 MPa for the as-grown VG sheets, approximately doubled to ∼10.0 MPa, while fluorination alone almost quadrupled it to ∼18.4 MPa. The maximum average E r of ∼32.4 MPa was achieved by repeatedly applying fluorination and ion bombardment. This increase can be explained by the formation of covalent bonds between the VG sheets due to ion bombardment, as well as the conversion from sp2 to sp3 and increased corrugation due to fluorination.

5.
Nano Lett ; 16(2): 1455-61, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26784372

RESUMO

Single-layer graphene chemically reduced by the Birch process delaminates from a Si/SiOx substrate when exposed to an ethanol/water mixture, enabling transfer of chemically functionalized graphene to arbitrary substrates such as metals, dielectrics, and polymers. Unlike in previous reports, the graphene retains hydrogen, methyl, and aryl functional groups during the transfer process. This enables one to functionalize the receiving substrate with the properties of the chemically modified graphene (CMG). For instance, magnetic force microscopy shows that the previously reported magnetic properties of partially hydrogenated graphene remain after transfer. We also transfer hydrogenated graphene from its copper growth substrate to a Si/SiOx wafer and thermally dehydrogenate it to demonstrate a polymer- and etchant-free graphene transfer for potential use in transmission electron microscopy. Finally, we show that the Birch reduction facilitates delamination of CMG by weakening van der Waals forces between graphene and its substrate.

6.
Nano Lett ; 15(8): 4876-82, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26125524

RESUMO

The high mobility exhibited by both supported and suspended graphene, as well as its large in-plane thermal conductivity, has generated much excitement across a variety of applications. As exciting as these properties are, one of the principal issues inhibiting the development of graphene technologies pertains to difficulties in engineering high-quality metal contacts on graphene. As device dimensions decrease, the thermal and electrical resistance at the metal/graphene interface plays a dominant role in degrading overall performance. Here we demonstrate the use of a low energy, electron-beam plasma to functionalize graphene with oxygen, fluorine, and nitrogen groups, as a method to tune the thermal and electrical transport properties across gold-single layer graphene (Au/SLG) interfaces. We find that while oxygen and nitrogen groups improve the thermal boundary conductance (hK) at the interface, their presence impairs electrical transport leading to increased contact resistance (ρC). Conversely, functionalization with fluorine has no impact on hK, yet ρC decreases with increasing coverage densities. These findings indicate exciting possibilities using plasma-based chemical functionalization to tailor the thermal and electrical transport properties of metal/2D material contacts.

7.
Nano Lett ; 14(9): 5212-7, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25072968

RESUMO

The addition of a single sheet of carbon atoms in the form of graphene can drastically alter friction between a nanoscale probe tip and a surface. Here, for the first time we show that friction can be altered over a wide range by fluorination. Specifically, the friction force between silicon atomic force microscopy tips and monolayer fluorinated graphene can range from 5-9 times higher than for graphene. While consistent with previous reports, the combined interpretation from our experiments and molecular dynamics simulations allows us to propose a novel mechanism: that the dramatic friction enhancement results from increased corrugation of the interfacial potential due to the strong local charge concentrated at fluorine sites, consistent with the Prandtl-Tomlinson model. The monotonic increase of friction with fluorination in experiments also demonstrates that friction force measurements provide a sensitive local probe of the degree of fluorination. Additionally, we found a transition from ordered to disordered atomic stick-slip upon fluorination, suggesting that fluorination proceeds in a spatially random manner.

8.
Nano Lett ; 14(12): 6936-41, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25383798

RESUMO

Heterogeneous engineering of two-dimensional layered materials, including metallic graphene and semiconducting transition metal dichalcogenides, presents an exciting opportunity to produce highly tunable electronic and optoelectronic systems. In order to engineer pristine layers and their interfaces, epitaxial growth of such heterostructures is required. We report the direct growth of crystalline, monolayer tungsten diselenide (WSe2) on epitaxial graphene (EG) grown from silicon carbide. Raman spectroscopy, photoluminescence, and scanning tunneling microscopy confirm high-quality WSe2 monolayers, whereas transmission electron microscopy shows an atomically sharp interface, and low energy electron diffraction confirms near perfect orientation between WSe2 and EG. Vertical transport measurements across the WSe2/EG heterostructure provides evidence that an additional barrier to carrier transport beyond the expected WSe2/EG band offset exists due to the interlayer gap, which is supported by theoretical local density of states (LDOS) calculations using self-consistent density functional theory (DFT) and nonequilibrium Green's function (NEGF).


Assuntos
Grafite/química , Membranas Artificiais , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Selênio/química , Compostos de Tungstênio/química , Condutividade Elétrica , Teste de Materiais
9.
Nano Lett ; 13(9): 4311-6, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23981005

RESUMO

Fluorination can alter the electronic properties of graphene and activate sites for subsequent chemistry. Here, we show that graphene fluorination depends on several variables, including XeF2 exposure and the choice of substrate. After fluorination, fluorine content declines by 50-80% over several days before stabilizing. While highly fluorinated samples remain insulating, mildly fluorinated samples regain some conductivity over this period. Finally, this loss does not reduce reactivity with alkylamines, suggesting that only nonvolatile fluorine participates in these reactions.


Assuntos
Fluoretos/química , Grafite/química , Eletricidade , Xenônio/química
10.
Adv Mater ; 36(7): e2309777, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37992676

RESUMO

The layered insulator hexagonal boron nitride (hBN) is a critical substrate that brings out the exceptional intrinsic properties of two-dimensional (2D) materials such as graphene and transition metal dichalcogenides (TMDs). In this work, the authors demonstrate how hBN slabs tuned to the correct thickness act as optical waveguides, enabling direct optical coupling of light emission from encapsulated layers into waveguide modes. Molybdenum selenide (MoSe2 ) and tungsten selenide (WSe2 ) are integrated within hBN-based waveguides and demonstrate direct coupling of photoluminescence emitted by in-plane and out-of-plane transition dipoles (bright and dark excitons) to slab waveguide modes. Fourier plane imaging of waveguided photoluminescence from MoSe2 demonstrates that dry etched hBN edges are an effective out-coupler of waveguided light without the need for oil-immersion optics. Gated photoluminescence of WSe2 demonstrates the ability of hBN waveguides to collect light emitted by out-of-plane dark excitons.Numerical simulations explore the parameters of dipole placement and slab thickness, elucidating the critical design parameters and serving as a guide for novel devices implementing hBN slab waveguides. The results provide a direct route for waveguide-based interrogation of layered materials, as well as a way to integrate layered materials into future photonic devices at arbitrary positions whilst maintaining their intrinsic properties.

11.
Nat Commun ; 15(1): 3845, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38714749

RESUMO

Harnessing electronic excitations involving coherent coupling to bosonic modes is essential for the design and control of emergent phenomena in quantum materials. In situations where charge carriers induce a lattice distortion due to the electron-phonon interaction, the conducting states get "dressed", which leads to the formation of polaronic quasiparticles. The exploration of polaronic effects on low-energy excitations is in its infancy in two-dimensional materials. Here, we present the discovery of an interlayer plasmon polaron in heterostructures composed of graphene on top of single-layer WS2. By using micro-focused angle-resolved photoemission spectroscopy during in situ doping of the top graphene layer, we observe a strong quasiparticle peak accompanied by several carrier density-dependent shake-off replicas around the single-layer WS2 conduction band minimum. Our results are explained by an effective many-body model in terms of a coupling between single-layer WS2 conduction electrons and an interlayer plasmon mode. It is important to take into account the presence of such interlayer collective modes, as they have profound consequences for the electronic and optical properties of heterostructures that are routinely explored in many device architectures involving 2D transition metal dichalcogenides.

12.
Nano Lett ; 12(2): 1013-7, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22214257

RESUMO

We report shear modulus (G) and internal friction (Q(-1)) measurements of large-area monolayer graphene films grown by chemical vapor deposition on copper foil and transferred onto high-Q silicon mechanical oscillators. The shear modulus, extracted from a resonance frequency shift at 0.4 K where the apparatus is most sensitive, averages 280 GPa. This is five times larger than those of the multilayered graphene-based films measured previously. The internal friction is unmeasurable within the sensitivity of our experiment and thus bounded above by Q(-1) ≤ 3 × 10(-5), which is orders-of-magnitude smaller than that of multilayered graphene-based films. Neither annealing nor interface modification has a measurable effect on G or Q(-1). Our results on G are consistent with recent theoretical evaluations and simulations carried out in this work, showing that the shear restoring force transitions from interlayer to intralayer interactions as the film thickness approaches one monolayer.


Assuntos
Grafite/química , Membranas Artificiais , Cobre/química , Tamanho da Partícula , Resistência ao Cisalhamento , Propriedades de Superfície , Volatilização
13.
Nano Lett ; 12(6): 3000-4, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22577860

RESUMO

Graphene has been widely studied for its high in-plane charge carrier mobility and long spin diffusion lengths. In contrast, the out-of-plane charge and spin transport behavior of this atomically thin material have not been well addressed. We show here that while graphene exhibits metallic conductivity in-plane, it serves effectively as an insulator for transport perpendicular to the plane. We report fabrication of tunnel junctions using single-layer graphene between two ferromagnetic metal layers in a fully scalable photolithographic process. The transport occurs by quantum tunneling perpendicular to the graphene plane and preserves a net spin polarization of the current from the contact so that the structures exhibit tunneling magnetoresistance to 425 K. These results demonstrate that graphene can function as an effective tunnel barrier for both charge and spin-based devices and enable realization of more complex graphene-based devices for highly functional nanoscale circuits, such as tunnel transistors, nonvolatile magnetic memory, and reprogrammable spin logic.


Assuntos
Eletrodos , Grafite/química , Imãs , Semicondutores , Desenho de Equipamento , Análise de Falha de Equipamento
14.
Nano Lett ; 12(2): 590-5, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22214512

RESUMO

Graphene-based devices have garnered tremendous attention due to the unique physical properties arising from this purely two-dimensional carbon sheet leading to tremendous efficiency in the transport of thermal carriers (i.e., phonons). However, it is necessary for this two-dimensional material to be able to efficiently transport heat into the surrounding 3D device architecture in order to fully capitalize on its intrinsic transport capabilities. Therefore, the thermal boundary conductance at graphene interfaces is a critical parameter in the realization of graphene electronics and thermal solutions. In this work, we examine the role of chemical functionalization on the thermal boundary conductance across metal/graphene interfaces. Specifically, we metalize graphene that has been plasma functionalized and then measure the thermal boundary conductance at Al/graphene/SiO(2) contacts with time domain thermoreflectance. The addition of adsorbates to the graphene surfaces are shown to influence the cross plane thermal conductance; this behavior is attributed to changes in the bonding between the metal and the graphene, as both the phonon flux and the vibrational mismatch between the materials are each subject to the interfacial bond strength. These results demonstrate plasma-based functionalization of graphene surfaces is a viable approach to manipulate the thermal boundary conductance.


Assuntos
Alumínio/química , Grafite/química , Condutividade Térmica , Adsorção , Propriedades de Superfície
15.
Nano Lett ; 12(1): 102-7, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22128775

RESUMO

In this paper we demonstrate high-quality, uniform dry transfer of graphene grown by chemical vapor deposition on copper foil to polystyrene. The dry transfer exploits an azide linker molecule to establish a covalent bond to graphene and to generate greater graphene-polymer adhesion compared to that of the graphene-metal foil. Thus, this transfer approach provides a novel alternative route for graphene transfer, which allows for the metal foils to be reused.


Assuntos
Cobre/química , Grafite/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Poliestirenos/química , Adesividade , Dessecação , Gases/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
16.
Nano Lett ; 12(8): 4212-8, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22764747

RESUMO

We report a method to introduce direct bonding between graphene platelets that enables the transformation of a multilayer chemically modified graphene (CMG) film from a "paper mache-like" structure into a stiff, high strength material. On the basis of chemical/defect manipulation and recrystallization, this technique allows wide-range engineering of mechanical properties (stiffness, strength, density, and built-in stress) in ultrathin CMG films. A dramatic increase in the Young's modulus (up to 800 GPa) and enhanced strength (sustainable stress ≥1 GPa) due to cross-linking, in combination with high tensile stress, produced high-performance (quality factor of 31,000 at room temperature) radio frequency nanomechanical resonators. The ability to fine-tune intraplatelet mechanical properties through chemical modification and to locally activate direct carbon-carbon bonding within carbon-based nanomaterials will transform these systems into true "materials-by-design" for nanomechanics.

17.
Phys Rev Lett ; 109(18): 186807, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23215315

RESUMO

We report a study of the valence band dispersion of twisted bilayer graphene using angle-resolved photoemission spectroscopy and ab initio calculations. We observe two noninteracting cones near the Dirac crossing energy and the emergence of van Hove singularities where the cones overlap for large twist angles (>5°). Besides the expected interaction between the Dirac cones, minigaps appeared at the Brillouin zone boundaries of the moiré superlattice formed by the misorientation of the two graphene layers. We attribute the emergence of these minigaps to a periodic potential induced by the moiré. These anticrossing features point to coupling between the two graphene sheets, mediated by moiré periodic potentials.

18.
Langmuir ; 28(21): 7957-61, 2012 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-22578013

RESUMO

There has been considerable interest in chemically functionalizing graphene films to control their electronic properties, to enhance their binding to other molecules for sensing, and to strengthen their interfaces with matrices in a composite material. Most reports to date have largely focused on noncovalent methods or the use of graphene oxide. Here, we present a method to activate CVD-grown graphene sheets using fluorination followed by reaction with ethylenediamine (EDA) to form covalent bonds. Reacted graphene was characterized via X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and Raman spectroscopy as well as measurements of electrical properties. The functionalization results in stable, densely packed layers, and the unbound amine of EDA was shown to be active toward subsequent chemical reactions.


Assuntos
Aminas/química , Cobre/química , Fluoretos/química , Grafite/química , Membranas Artificiais
19.
Nano Lett ; 11(12): 5461-4, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22050117

RESUMO

We demonstrated the fabrication of graphene nanoribbons (GNRs) as narrow as 35 nm created using scanning probe lithography to deposit a polymer mask(1-3) and then fluorinating the sample to isolate the masked graphene from the surrounding wide band gap fluorographene. The polymer protected the GNR from atmospheric adsorbates while the adjacent fluorographene stably p-doped the GNRs which had electron mobilities of ∼2700 cm2/(V·s). Chemical isolation of the GNR enabled resetting the device to nearly pristine graphene.

20.
Nano Lett ; 11(10): 4304-8, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21913676

RESUMO

We present the first nanomechanical resonators microfabricated in single-crystal diamond. Shell-type resonators only 70 nm thick, the thinnest single crystal diamond structures produced to date, demonstrate a high-quality factor (Q ≈ 1000 at room temperature, Q ≈ 20 000 at 10 K) at radio frequencies (50-600 MHz). Quality factor dependence on temperature and frequency suggests an extrinsic origin to the dominant dissipation mechanism and methods to further enhance resonator performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA