Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
mSphere ; 8(2): e0001523, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36794947

RESUMO

The molecular evolutionary mechanisms underpinning virus-host interactions are increasingly recognized as key drivers of virus emergence, host specificity, and the likelihood that viruses can undergo a host shift that alters epidemiology and transmission biology. Zika virus (ZIKV) is mainly transmitted between humans by Aedes aegypti mosquitoes. However, the 2015 to 2017 outbreak stimulated discussion regarding the role of Culex spp. mosquitoes in transmission. Reports of ZIKV-infected Culex mosquitoes, in nature and under laboratory conditions, resulted in public and scientific confusion. We previously found that Puerto Rican ZIKV does not infect colonized Culex quinquefasciatus, Culex pipiens, or Culex tarsalis, but some studies suggest they may be competent ZIKV vectors. Therefore, we attempted to adapt ZIKV to Cx. tarsalis by serially passaging virus on cocultured Ae. aegypti (Aag2) and Cx. tarsalis (CT) cells to identify viral determinants of species specificity. Increasing fractions of CT cells resulted in decreased overall virus titer and no enhancement of Culex cell or mosquito infection. Next-generation sequencing of cocultured virus passages revealed synonymous and nonsynonymous variants throughout the genome that arose as CT cell fractions increased. We generated nine recombinant ZIKVs containing combinations of the variants of interest. None of these viruses showed increased infection of Culex cells or mosquitoes, demonstrating that variants associated with passaging were not specific to increased Culex infection. These results reveal the challenge of a virus adapting to a new host, even when pushed to adapt artificially. Importantly, they also demonstrate that while ZIKV may occasionally infect Culex mosquitoes, Aedes mosquitoes likely drive transmission and human risk. IMPORTANCE ZIKV is mainly transmitted between humans by Aedes mosquitoes. In nature, ZIKV-infected Culex mosquitoes have been found, and ZIKV infrequently infects Culex mosquitoes under laboratory conditions. Yet, most studies show that Culex mosquitoes are not competent vectors for ZIKV. We attempted to adapt ZIKV to Culex cells to identify viral determinants of species specificity. We sequenced ZIKV after it was passaged on a mixture of Aedes and Culex cells and found that it acquired many variants. We generated recombinant viruses containing combinations of the variants of interest to determine if any of these changes enhance infection in Culex cells or mosquitoes. Recombinant viruses did not show increased infection in Culex cells or mosquitoes, but some variants increased infection in Aedes cells, suggesting adaptation to those cells instead. These results reveal that arbovirus species specificity is complex, and that virus adaptation to a new genus of mosquito vectors likely requires multiple genetic changes.


Assuntos
Culex , Adaptação ao Hospedeiro , Interações entre Hospedeiro e Microrganismos , Insetos Vetores , Zika virus , Animais , Zika virus/genética , Zika virus/fisiologia , Culex/genética , Culex/virologia , Adaptação ao Hospedeiro/genética , Evolução Molecular , Insetos Vetores/virologia , Mutação , Especificidade da Espécie
2.
Insects ; 13(9)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36135557

RESUMO

Culex quinquefasciatus mosquitoes are a globally widespread vector of multiple human and animal pathogens, including West Nile virus, Saint Louis encephalitis virus, and lymphatic filariasis. Since the introduction of West Nile virus to the United States in 1999, a cumulative 52,532 cases have been reported to the CDC, including 25,849 (49.2%) neuroinvasive cases and 2456 (5%) deaths. Viral infections elicit immune responses in their mosquito vectors, including the RNA interference (RNAi) pathway considered to be the cornerstone antiviral response in insects. To investigate mosquito host genes involved in pathogen interactions, CRISPR/Cas9-mediated gene-editing can be used for functional studies of mosquito-derived cell lines. Yet, the tools available for the study of Cx. quinquefasciatus-derived (Hsu) cell lines remain largely underdeveloped compared to other mosquito species. In this study, we constructed and characterized a Culex-optimized CRISPR/Cas9 plasmid for use in Hsu cell cultures. By comparing it to the original Drosophila melanogaster CRISPR/Cas9 plasmid, we showed that the Culex-optimized plasmid demonstrated highly efficient editing of the genomic loci of the RNAi proteins Dicer-2 and PIWI4 in Hsu cells. These new tools support our ability to investigate gene targets involved in mosquito antiviral response, and thus the future development of gene-based vector control strategies.

3.
Am J Trop Med Hyg ; 103(2): 869-875, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32431284

RESUMO

Chikungunya virus (CHIKV) and Zika virus (ZIKV) are arthropod-borne viruses transmitted mainly by Aedes aegypti mosquitoes. These viruses have become endemic in large parts of North, Central, and South America. Arboviruses persistently infect mosquitoes throughout their life span and become infectious (i.e., expectorate infectious virus in saliva) after a period of time called the extrinsic incubation period (EIP). The duration of this infectiousness, however, is not well characterized. This is an important shortcoming because many epidemiological models assume that mosquitoes continue to be infectious for the duration of their life span. To define the duration of infectiousness for CHIKV and ZIKV, mosquitoes were infected orally with these viruses. Every 2 days, legs/wings, midguts, salivary glands, and saliva were collected from 30 to 60 mosquitoes and viral load measured. In CHIKV-infected mosquitoes, infectious virus in saliva peaked early (2-4 dpi), and then decreased rapidly and was rarely observed after 10 dpi. Viral RNA in infected tissues also decreased after the initial peak (4-8 dpi) but did so much less drastically. In ZIKV-infected mosquitoes, the infectious virus in saliva peaked at 12-14 dpi and dropped off only slightly after 14 dpi. In infected tissues, viral RNA increased early during infection, and then plateaued after 6-10 days. Our findings suggest that significant variation exists in the duration of the infectious period for arboviruses that is in part influenced by virus clearance from expectorated saliva.


Assuntos
Aedes/virologia , Vírus Chikungunya/fisiologia , Intestinos/virologia , Saliva/virologia , Glândulas Salivares/virologia , Replicação Viral/fisiologia , Zika virus/fisiologia , Animais , Febre de Chikungunya/transmissão , Extremidades/virologia , Período de Incubação de Doenças Infecciosas , Mosquitos Vetores/virologia , Asas de Animais/virologia , Infecção por Zika virus/transmissão
4.
Insect Biochem Mol Biol ; 109: 13-23, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30959110

RESUMO

RNA interference is a crucial antiviral mechanism in arthropods, including in mosquito vectors of arthropod-borne viruses (arboviruses). Although the exogenous small interfering RNA (siRNA) pathway constitutes an efficient antiviral response in mosquitoes, virus-derived P-element induced wimpy testis (PIWI)-interacting RNAs (piRNAs) have been implicated in the response to alpha-, bunya- and flaviviruses in Aedes spp. mosquitoes. Culex mosquitoes transmit several medically important viruses including West Nile virus (WNV), but are considerably less well studied than Aedes mosquitoes and little is known about antiviral RNA interference in Culex mosquitoes. Therefore, we sequenced small RNA (sRNA) libraries from different Culex cell lines and tissues infected with WNV. The clear majority of virus-derived sRNA reads were 21 nt siRNAs in all cell lines and tissues tested, with no evidence for a role of WNV-derived piRNAs. Additionally, we aligned sRNA reads from Culex quinquefasciatus Hsu cells to the insect-specific rhabdovirus, Merida virus, which persistently replicates in these cells. We found that a significant proportion of the sRNA response to Merida virus consisted of piRNAs. Since viral DNA forms have been implicated in siRNA and piRNA responses of Aedes spp. mosquitoes, we also tested for viral DNA forms in WNV infected Culex cells. We detected viral DNA in Culex tarsalis cells infected with WNV and, to a lesser amount, WNV and Merida virus-derived DNA in Culex quinquefasciatus Hsu cells. In conclusion, Hsu cells generated Merida virus-derived piRNAs, but our data suggests that the major sRNA response of Culex cells and mosquitoes to WNV infection is the exogenous siRNA response. It is also evident that sRNA responses differ significantly between specific virus-mosquito combinations. Future work using additional Culex-borne viruses may further elucidate how virus-derived piRNAs are generated in Culex cells and what role they may play in controlling replication of different viruses.


Assuntos
Proteínas Argonautas/genética , Culex/imunologia , Proteínas de Insetos/genética , RNA Interferente Pequeno/genética , Vírus do Nilo Ocidental/fisiologia , Aedes/genética , Aedes/imunologia , Aedes/virologia , Animais , Proteínas Argonautas/imunologia , Linhagem Celular , Culex/genética , Culex/virologia , Feminino , Flavivirus/fisiologia , Proteínas de Insetos/imunologia , Intestinos/virologia , Ovário/metabolismo , Ovário/virologia , Interferência de RNA , RNA Interferente Pequeno/imunologia , Rhabdoviridae/fisiologia , Glândulas Salivares/metabolismo , Glândulas Salivares/virologia
5.
Elife ; 82019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31596239

RESUMO

The magnitude and duration of vertebrate viremia is a critical determinant of arbovirus transmission, geographic spread, and disease severity. We find that multiple alphaviruses, including chikungunya (CHIKV), Ross River (RRV), and o'nyong 'nyong (ONNV) viruses, are cleared from the circulation of mice by liver Kupffer cells, impeding viral dissemination. Clearance from the circulation was independent of natural antibodies or complement factor C3, and instead relied on scavenger receptor SR-A6 (MARCO). Remarkably, lysine to arginine substitutions at distinct residues within the E2 glycoproteins of CHIKV and ONNV (E2 K200R) as well as RRV (E2 K251R) allowed for escape from clearance and enhanced viremia and dissemination. Mutational analysis revealed that viral clearance from the circulation is strictly dependent on the presence of lysine at these positions. These findings reveal a previously unrecognized innate immune pathway that controls alphavirus viremia and dissemination in vertebrate hosts, ultimately influencing disease severity and likely transmission efficiency.


Assuntos
Infecções por Alphavirus/imunologia , Vírus Chikungunya/imunologia , Células de Kupffer/imunologia , Vírus O'nyong-nyong/imunologia , Receptores Imunológicos/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Animais , Modelos Animais de Doenças , Lisina/genética , Lisina/metabolismo , Camundongos , Mutação de Sentido Incorreto
6.
Insects ; 9(4)2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30513725

RESUMO

In urban settings, chikungunya, Zika, and dengue viruses are transmitted by Aedes aegypti mosquitoes. Since these viruses co-circulate in several regions, coinfection in humans and vectors may occur, and human coinfections have been frequently reported. Yet, little is known about the molecular aspects of virus interactions within hosts and how they contribute to arbovirus transmission dynamics. We have previously shown that Aedes aegypti exposed to chikungunya and Zika viruses in the same blood meal can become coinfected and transmit both viruses simultaneously. However, mosquitoes may also become coinfected by multiple, sequential feeds on single infected hosts. Therefore, we tested whether sequential infection with chikungunya and Zika viruses impacts mosquito vector competence. We exposed Ae. aegypti mosquitoes first to one virus and 7 days later to the other virus and compared infection, dissemination, and transmission rates between sequentially and single infected groups. We found that coinfection rates were high after sequential exposure and that mosquitoes were able to co-transmit both viruses. Surprisingly, chikungunya virus coinfection enhanced Zika virus transmission 7 days after the second blood meal. Our data demonstrate heterologous arbovirus synergism within mosquitoes, by unknown mechanisms, leading to enhancement of transmission under certain conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA