Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Plant Cell Environ ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39169893

RESUMO

While dynamic regulation of photosynthesis in fluctuating light is increasingly recognized as an important driver of carbon uptake, acclimation to realistic irradiance fluctuations is still largely unexplored. We subjected Arabidopsis thaliana (L.) wild-type and jac1 mutants to irradiance fluctuations with distinct amplitudes and average irradiance. We examined how irradiance fluctuations affected leaf structure, pigments and physiology. A wider amplitude of fluctuations produced a stronger acclimation response. Large reductions of leaf mass per area under fluctuating irradiance framed our interpretation of changes in photosynthetic capacity and mesophyll conductance as measured by three separate methods, in that photosynthetic investment increased markedly on a mass basis, but only a little on an area basis. Moreover, thermal imagery showed that leaf transpiration was four times higher under fluctuating irradiance. Leaves growing under fluctuating irradiance, although thinner, maintained their photosynthetic capacity, as measured through light- and CO2-response curves; suggesting their photosynthesis may be more cost-efficient than those under steady light, but overall may incur increased maintenance costs. This is especially relevant for plant performance globally because naturally fluctuating irradiance creates conflicting acclimation cues for photosynthesis and transpiration that may hinder progress towards ensuring food security under climate-related extremes of water stress.

2.
Glob Chang Biol ; 30(4): e17275, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38624252

RESUMO

Solar radiation is scattered by cloud cover, aerosols and other particles in the atmosphere, all of which are affected by global changes. Furthermore, the diffuse fraction of solar radiation is increased by more frequent forest fires and likewise would be if climate interventions such as stratospheric aerosol injection were adopted. Forest ecosystem studies predict that an increase in diffuse radiation would result in higher productivity, but ecophysiological data are required to identify the processes responsible within the forest canopy. In our study, the response of a boreal forest to direct, diffuse and heterogeneous solar radiation conditions was examined during the daytime in the growing season to determine how carbon uptake is affected by radiation conditions at different scales. A 10-year data set of ecosystem, shoot and forest floor vegetation carbon and water-flux data was examined. Ecosystem-level carbon assimilation was higher under diffuse radiation conditions in comparison with direct radiation conditions at equivalent total photosynthetically active radiation (PAR). This was driven by both an increase in shoot and forest floor vegetation photosynthetic rate. Most notably, ecosystem-scale productivity was strongly related to the absolute amount of diffuse PAR, since it integrates both changes in total PAR and diffuse fraction. This finding provides a gateway to explore the processes by which absolute diffuse PAR enhances productivity, and the long-term persistence of this effect under scenarios of higher global diffuse radiation.


Assuntos
Ecossistema , Taiga , Florestas , Atmosfera , Carbono
3.
Glob Chang Biol ; 30(4): e17279, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619007

RESUMO

There are close links between solar UV radiation, climate change, and plastic pollution. UV-driven weathering is a key process leading to the degradation of plastics in the environment but also the formation of potentially harmful plastic fragments such as micro- and nanoplastic particles. Estimates of the environmental persistence of plastic pollution, and the formation of fragments, will need to take in account plastic dispersal around the globe, as well as projected UV radiation levels and climate change factors.


Assuntos
Energia Solar , Raios Ultravioleta , Raios Ultravioleta/efeitos adversos , Mudança Climática , Poluição Ambiental , Tempo (Meteorologia)
4.
Photochem Photobiol Sci ; 23(4): 629-650, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38512633

RESUMO

This Assessment Update by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) considers the interactive effects of solar UV radiation, global warming, and other weathering factors on plastics. The Assessment illustrates the significance of solar UV radiation in decreasing the durability of plastic materials, degradation of plastic debris, formation of micro- and nanoplastic particles and accompanying leaching of potential toxic compounds. Micro- and nanoplastics have been found in all ecosystems, the atmosphere, and in humans. While the potential biological risks are not yet well-established, the widespread and increasing occurrence of plastic pollution is reason for continuing research and monitoring. Plastic debris persists after its intended life in soils, water bodies and the atmosphere as well as in living organisms. To counteract accumulation of plastics in the environment, the lifetime of novel plastics or plastic alternatives should better match the functional life of products, with eventual breakdown releasing harmless substances to the environment.


Assuntos
Plásticos , Poluentes Químicos da Água , Humanos , Plásticos/toxicidade , Ecossistema , Raios Ultravioleta , Mudança Climática , Poluentes Químicos da Água/análise
5.
Physiol Plant ; 176(3): e14383, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38859677

RESUMO

The effects of transient increases in UVB radiation on plants are not well known; whether cumulative damage dominates or, alternately, an increase in photoprotection and recovery periods ameliorates any negative effects. We investigated photosynthetic capacity and metabolite accumulation of grapevines (Vitis vinifera Cabernet Sauvignon) in response to UVB fluctuations under four treatments: fluctuating UVB (FUV) and steady UVB radiation (SUV) at similar total biologically effective UVB dose (2.12 and 2.23 kJ m-2 day-1), and their two respective no UVB controls. We found a greater decrease in stomatal conductance under SUV than FUV. There was no decrease in maximum yield of photosystem II (Fv/Fm) or its operational efficiency (ɸPSII) under the two UVB treatments, and Fv/Fm was higher under SUV than FUV. Photosynthetic capacity was enhanced under FUV in the light-limited region of rapid light-response curves but enhanced by SUV in the light-saturated region. Flavonol content was similarly increased by both UVB treatments. We conclude that, while both FUV and SUV effectively stimulate acclimation to UVB radiation at realistic doses, FUV confers weaker acclimation than SUV. This implies that recovery periods between transient increases in UVB radiation reduce UVB acclimation, compared to an equivalent dose of UVB provided continuously. Thus, caution is needed in interpreting the findings of experiments using steady UVB radiation treatments to infer effects in natural environments, as the stimulatory effect of steady UVB is greater than that of the equivalent fluctuating UVB.


Assuntos
Aclimatação , Fotossíntese , Complexo de Proteína do Fotossistema II , Raios Ultravioleta , Vitis , Fotossíntese/efeitos da radiação , Fotossíntese/fisiologia , Aclimatação/efeitos da radiação , Aclimatação/fisiologia , Vitis/efeitos da radiação , Vitis/fisiologia , Vitis/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Clorofila/metabolismo , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Flavonóis/metabolismo
6.
New Phytol ; 238(5): 2000-2015, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36807284

RESUMO

Wind-induced movement in the canopy produces rapid fluctuations in irradiance, called 'windflecks'. They create a dynamic environment for photosynthesis that bears little resemblance to the stable controlled conditions under which plants are typically measured. We recorded time series of irradiance to assess the diversity of windfleck properties (intensity, duration, frequency, clustering, and spectral composition) in canopies of four crops and five tree species. We also measured traits associated with leaf morphology and canopy architecture, which could be associated with canopy-specific differences in windflecks. Distinct features of windfleck properties were identified both between and among crop and tree canopy. Windflecks in crops were generally more intense and longer, and baseline irradiance was much higher than even the peak irradiance during a windfleck in a forest. The change in spectral composition during a windfleck was species-specific. Overall, irradiance fluctuations were less frequent and less intense in tall canopies and with increased depth from the canopy. Our systematic exploration of how canopy structure dictates light dynamics provides new insight into windfleck creation. Coupled with progress in elucidation of the mechanisms of photosynthetic induction, this knowledge should improve our capacity to model canopy ecophysiology and understand light use efficiency in shade.


Assuntos
Luz , Fotossíntese , Fotossíntese/fisiologia , Florestas , Árvores/fisiologia , Produtos Agrícolas , Folhas de Planta/fisiologia
7.
New Phytol ; 234(2): 735-747, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35090193

RESUMO

The plant area index (PAI) is a structural trait that succinctly parametrizes the foliage distribution of a canopy and is usually estimated using indirect optical techniques such as digital hemispherical photography. Critically, on-the-ground photographic measurements forgo the vertical variation of canopy structure which regulates the local light environment. Hence new approaches are sought for vertical sampling of traits. We present an uncrewed aircraft system (UAS) spherical photographic method to obtain structural traits throughout the depth of tree canopies. Our method explained 89% of the variation in PAI when compared with ground-based hemispherical photography. When comparing UAS vertical trait profiles with airborne laser scanning data, we found highest agreement in an open birch (Betula pendula/pubescens) canopy. Minor disagreement was found in dense spruce (Picea abies) stands, especially in the lower canopy. Our new method enables easy estimation of the vertical dimension of canopy structural traits in previously inaccessible spaces. The method is affordable and safe and therefore readily usable by plant scientists.


Assuntos
Picea , Folhas de Planta , Aeronaves , Fotografação , Folhas de Planta/fisiologia , Árvores/fisiologia
8.
New Phytol ; 235(4): 1365-1378, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35569099

RESUMO

Sunflecks are transient patches of direct radiation that provide a substantial proportion of the daily irradiance to leaves in the lower canopy. In this position, faster photosynthetic induction would allow for higher sunfleck-use efficiency, as is commonly reported in the literature. Yet, when sunflecks are too few and far between, it may be more beneficial for shade leaves to prioritize efficient photosynthesis under shade. We investigated the temporal dynamics of photosynthetic induction, recovery under shade, and stomatal movement during a sunfleck, in sun and shade leaves of Fagus sylvatica from three provenances of contrasting origin. We found that shade leaves complete full induction in a shorter time than sun leaves, but that sun leaves respond faster than shade leaves due to their much larger amplitude of induction. The core-range provenance achieved faster stomatal opening in shade leaves, which may allow for better sunfleck-use efficiency in denser canopies and lower canopy positions. Our findings represent a paradigm shift for future research into light fluctuations in canopies, drawing attention to the ubiquitous importance of sunflecks for photosynthesis, not only in lower-canopy leaves where shade is prevalent, but particularly in the upper canopy where longer sunflecks are more common due to canopy openness.


Assuntos
Fagus , Folhas de Planta , Luz Solar , Fotossíntese , Árvores
9.
Photochem Photobiol Sci ; 21(6): 997-1009, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35226331

RESUMO

Evergreen plants growing at high latitudes or high elevations may experience freezing events in their photosynthetic tissues. Freezing events can have physical and physiological effects on the leaves which alter leaf optical properties affecting remote and proximal sensing parameters. We froze leaves of six alpine plant species (Soldanella alpina, Ranunculus kuepferi, Luzula nutans, Gentiana acaulis, Geum montanum, and Centaurea uniflora) and three evergreen forest understorey species (Hepatica nobilis, Fragaria vesca and Oxalis acetosella), and assessed their spectral transmittance and optically measured pigments, as well as photochemical efficiency of photosystem II (PSII) as an indicator of freezing damage. Upon freezing, leaves of all the species transmitted more photosynthetically active radiation (PAR) and some species had increased ultraviolet-A (UV-A) transmittance. These differences were less pronounced in alpine than in understorey species, which may be related to higher chlorophyll degradation, visible as reduced leaf chlorophyll content upon freezing in the latter species. Among these understorey forbs, the thin leaves of O. acetosella displayed the largest reduction in chlorophyll (-79%). This study provides insights into how freezing changes the leaf optical properties of wild plants which could be used to set a baseline for upscaling optical reflectance data from remote sensing. Changes in leaf transmittance may also serve to indicate photosynthetic sufficiency and physiological tolerance of freezing events, but experimental research is required to establish this functional association.


Assuntos
Clorofila , Folhas de Planta , Clorofila/metabolismo , Florestas , Congelamento , Fotossíntese , Folhas de Planta/metabolismo
10.
Physiol Plant ; 174(3): e13723, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35606930

RESUMO

Forest understorey plants receive most sunlight in springtime before canopy closure, and in autumn following leaf-fall. We hypothesised that plant species must adjust their phenological and photoprotective strategies in response to large changes in the spectral composition of the sunlight they receive. Here, we identified how plant species growing in northern deciduous and evergreen forest understoreys differ in their response to blue light and ultraviolet (UV) radiation according to their functional strategy. We installed filters in a forest understorey in southern Finland, to create the following treatments attenuating: UV radiation below 350 nm, all UV radiation (< 400 nm), all blue light and UV radiation (< 500 nm), and a transparent control. In eight species, representing different functional strategies, we assessed leaf optical properties, phenology, and epidermal flavonoid contents over two years. Blue light accelerated leaf senescence in all species measured in the understorey, apart from Quercus robur seedlings, whereas UV radiation only accelerated leaf senescence in Acer platanoides seedlings. More light-demanding species accumulated flavonols in response to seasonal changes in light quality compared to shade-tolerant and wintergreen species and were particularly responsive to blue light. Reduction of blue and UV radiation under shade reveals an important role for microclimatic effects on autumn phenology and leaf photoprotection. An extension of canopy cover under climate change, and its associated suppression of understorey blue light and UV radiation, may delay leaf senescence for understorey species with an autumn niche.


Assuntos
Florestas , Plântula , Luz Solar , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Plântula/efeitos da radiação , Raios Ultravioleta
11.
Plant Cell Environ ; 44(11): 3524-3537, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34418115

RESUMO

Under field conditions, plants are subject to wind-induced movement which creates fluctuations of light intensity and spectral quality reaching the leaves, defined here as windflecks. Within this study, irradiance within two contrasting wheat (Triticum aestivum) canopies during full sun conditions was measured using a spectroradiometer to determine the frequency, duration and magnitude of low- to high-light events plus the spectral composition during wind-induced movement. Similarly, a static canopy was modelled using three-dimensional reconstruction and ray tracing to determine fleck characteristics without the presence of wind. Corresponding architectural traits were measured manually and in silico including plant height, leaf area and angle plus biomechanical properties. Light intensity can differ up to 40% during a windfleck, with changes occurring on a sub-second scale compared to ~5 min in canopies not subject to wind. Features such as a shorter height, more erect leaf stature and having an open structure led to an increased frequency and reduced time interval of light flecks in the CMH79A canopy compared to Paragon. This finding illustrates the potential for architectural traits to be selected to improve the canopy light environment and provides the foundation to further explore the links between plant form and function in crop canopies.


Assuntos
Folhas de Planta/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Vento , Fenômenos Biomecânicos , Luz , Fenótipo
12.
J Exp Bot ; 72(13): 5066-5078, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33928350

RESUMO

The roles of different plasma membrane aquaporins (PIPs) in leaf-level gas exchange of Arabidopsis thaliana were examined using knockout mutants. Since multiple Arabidopsis PIPs are implicated in CO2 transport across cell membranes, we focused on identifying the effects of the knockout mutations on photosynthesis, and whether they are mediated through the control of stomatal conductance of water vapour (gs), mesophyll conductance of CO2 (gm), or both. We grew Arabidopsis plants in low and high humidity environments and found that the contribution of PIPs to gs was larger under low air humidity when the evaporative demand was high, whereas any effect of a lack of PIP function was minimal under higher humidity. The pip2;4 knockout mutant had 44% higher gs than wild-type plants under low humidity, which in turn resulted in an increased net photosynthetic rate (Anet). We also observed a 23% increase in whole-plant transpiration (E) for this knockout mutant. The lack of functional plasma membrane aquaporin AtPIP2;5 did not affect gs or E, but resulted in homeostasis of gm despite changes in humidity, indicating a possible role in regulating CO2 membrane permeability. CO2 transport measurements in yeast expressing AtPIP2;5 confirmed that this aquaporin is indeed permeable to CO2.


Assuntos
Aquaporinas , Aquaporinas/genética , Aquaporinas/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Transpiração Vegetal , Pressão de Vapor , Água/metabolismo
13.
New Phytol ; 222(4): 1757-1765, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30697749

RESUMO

Improving our understanding of species ranges under rapid climate change requires application of our knowledge of the tolerance and adaptive capacity of populations to changing environmental conditions. Here, we describe an emerging modelling approach, ΔTraitSDM, which attempts to achieve this by explaining species distribution ranges based on phenotypic plasticity and local adaptation of fitness-related traits measured across large geographical gradients. The collection of intraspecific trait data measured in common gardens spanning broad environmental clines has promoted the development of these new models - first in trees but now rapidly expanding to other organisms. We review, explain and harmonize the main findings from this new generation of models that, by including trait variation over geographical scales, are able to provide new insights into future species ranges. Overall, ΔTraitSDM predictions generally deliver a less alarming message than previous models of species distribution under new climates, indicating that phenotypic plasticity should help, to a considerable degree, some plant populations to persist under climate change. The development of ΔTraitSDMs offers a new perspective to analyse intraspecific variation in single and multiple traits, with the rationale that trait (co)variation and consequently fitness can significantly change across geographical gradients and new climates.


Assuntos
Adaptação Fisiológica , Modelos Biológicos , Característica Quantitativa Herdável , Ecossistema , Fenótipo , Especificidade da Espécie
14.
Photochem Photobiol Sci ; 18(8): 1963-1971, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31342042

RESUMO

Sunlight is strongly attenuated by the snowpack, causing irradiance to decrease exponentially with depth. The strength of attenuation is wavelength dependent across the spectrum. Changes in received irradiance and its spectral composition are used by plants as cues for the timing of phenology, and it is known that at shallow depths in the snowpack there is sufficient light for plants to photosynthesize if conditions are otherwise favourable. The spectral composition of solar radiation under snow in the visible region was already determined in the 1970s using scanning spectroradiometers, but spectral attenuation within the ultraviolet region (UV-B 280-315 nm, UV-A 315-400 nm) has not been well characterised because it is difficult to measure. We measured vertical transects of spectral irradiance (290-900 nm) transmitted through a settled seasonal snowpack. The peak transmission of radiation was in the UV-A region in the upper centimetres of the snowpack and transmittance generally declined at longer wavelengths. Given the known action spectra of plant photoreceptors, these results illustrate the possibility that changing UV-A : visible and red : far-red radiation ratios under the snowpack may serve as spectral cues for plants; potentially priming plants for the less stable environment they experience following snowmelt. Array spectrometers open opportunities for rapid and continuous measurement of irradiance in challenging environments, e.g. beneath the snowpack, and capturing changing light conditions for plants. Future research is needed to couple the spectral transmittance of snowpacks differing in their longevity and crystal structure with measurements of the perception and response to radiation by plants under snow.

15.
Photochem Photobiol Sci ; 18(2): 275-294, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30649121

RESUMO

Ultraviolet-B radiation (UV-B, 280-315 nm) constitutes less than 1% of the total solar radiation that reaches the Earth's surface but has a disproportional impact on biological and ecological processes from the individual to the ecosystem level. Absorption of UV-B by ozone is also one of the primary heat sources to the stratosphere, so variations in UV-B have important relationships to the Earth's radiation budget. Yet despite its importance for understanding atmospheric and ecological processes, there is limited understanding about the changes in UV-B radiation in the geological past. This is because systematic measurements of total ozone and surface UV-B only exist since the 1970s, so biological or geochemical proxies from sediment archives are needed to reconstruct UV-B irradiance received at the Earth surface beyond the experimental record. Recent developments have shown that the quantification of UV-B-absorbing compounds in pollen and spores have the potential to provide a continuous record of the solar-ultraviolet radiation received by plants. There is increasing interest in developing this proxy in palaeoclimatic and palaeoecological research. However, differences in interpretation exist between palaeoecologists, who are beginning to apply the proxy under various geological settings, and UV-B ecologists, who question whether a causal dose-response relationship of pollen and spore chemistry to UV-B irradiance has really been established. Here, we use a proxy-system modelling approach to systematically assess components of the pollen- and spore-based UV-B-irradiance proxy to ask how these differences can be resolved. We identify key unknowns and uncertainties in making inferences about past UV-B irradiance, from the pollen sensor, the sedimentary archive, and through the laboratory and experimental procedures in order to target priority areas of future work. We argue that an interdisciplinary approach, modifying methods used by plant ecologists studying contemporary responses to solar-UV-B radiation specifically to suit the needs of palaeoecological analyses, provides a way forward in developing the most reliable reconstructions for the UV-B irradiance received by plants across a range of timescales.


Assuntos
Fósseis , Modelos Biológicos , Plantas/metabolismo , Pólen/metabolismo , Energia Solar , Esporos/metabolismo , Raios Ultravioleta
16.
Photochem Photobiol Sci ; 18(3): 681-716, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30810560

RESUMO

Exposure of plants and animals to ultraviolet-B radiation (UV-B; 280-315 nm) is modified by stratospheric ozone dynamics and climate change. Even though stabilisation and projected recovery of stratospheric ozone is expected to curtail future increases in UV-B radiation at the Earth's surface, on-going changes in climate are increasingly exposing plants and animals to novel combinations of UV-B radiation and other climate change factors (e.g., ultraviolet-A and visible radiation, water availability, temperature and elevated carbon dioxide). Climate change is also shifting vegetation cover, geographic ranges of species, and seasonal timing of development, which further modifies exposure to UV-B radiation. Since our last assessment, there has been increased understanding of the underlying mechanisms by which plants perceive UV-B radiation, eliciting changes in growth, development and tolerances of abiotic and biotic factors. However, major questions remain on how UV-B radiation is interacting with other climate change factors to modify the production and quality of crops, as well as important ecosystem processes such as plant and animal competition, pest-pathogen interactions, and the decomposition of dead plant matter (litter). In addition, stratospheric ozone depletion is directly contributing to climate change in the southern hemisphere, such that terrestrial ecosystems in this region are being exposed to altered patterns of precipitation, temperature and fire regimes as well as UV-B radiation. These ozone-driven changes in climate have been implicated in both increases and reductions in the growth, survival and reproduction of plants and animals in Antarctica, South America and New Zealand. In this assessment, we summarise advances in our knowledge of these and other linkages and effects, and identify uncertainties and knowledge gaps that limit our ability to fully evaluate the ecological consequences of these environmental changes on terrestrial ecosystems.


Assuntos
Mudança Climática , Ozônio Estratosférico/análise , Raios Ultravioleta , Animais , Dióxido de Carbono/análise , Ecossistema , Poluentes Ambientais/análise , Água Doce/análise , Aquecimento Global , Proliferação Nociva de Algas/efeitos da radiação , Luz , Modelos Químicos , Recursos Naturais , Fotólise/efeitos da radiação , Água do Mar/análise
17.
Photochem Photobiol Sci ; 18(5): 970-988, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30720036

RESUMO

Plants perceive ultraviolet-B (UV-B) radiation through the UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8), and initiate regulatory responses via associated signalling networks, gene expression and metabolic pathways. Various regulatory adaptations to UV-B radiation enable plants to harvest information about fluctuations in UV-B irradiance and spectral composition in natural environments, and to defend themselves against UV-B exposure. Given that UVR8 is present across plant organs and tissues, knowledge of the systemic signalling involved in its activation and function throughout the plant is important for understanding the context of specific responses. Fine-scale understanding of both UV-B irradiance and perception within tissues and cells requires improved application of knowledge about UV-attenuation in leaves and canopies, warranting greater consideration when designing experiments. In this context, reciprocal crosstalk among photoreceptor-induced pathways also needs to be considered, as this appears to produce particularly complex patterns of physiological and morphological response. Through crosstalk, plant responses to UV-B radiation go beyond simply UV-protection or amelioration of damage, but may give cross-protection over a suite of environmental stressors. Overall, there is emerging knowledge showing how information captured by UVR8 is used to regulate molecular and physiological processes, although understanding of upscaling to higher levels of organisation, i.e. organisms, canopies and communities remains poor. Achieving this will require further studies using model plant species beyond Arabidopsis, and that represent a broad range of functional types. More attention should also be given to plants in natural environments in all their complexity, as such studies are needed to acquire an improved understanding of the impact of climate change in the context of plant-UV responses. Furthermore, broadening the scope of experiments into the regulation of plant-UV responses will facilitate the application of UV radiation in commercial plant production. By considering the progress made in plant-UV research, this perspective highlights prescient topics in plant-UV photobiology where future research efforts can profitably be focussed. This perspective also emphasises burgeoning interdisciplinary links that will assist in understanding of UV-B effects across organisational scales and gaps in knowledge that need to be filled so as to achieve an integrated vision of plant responses to UV-radiation.


Assuntos
Folhas de Planta/metabolismo , Plantas/metabolismo , Raios Ultravioleta , Fenômenos Ecológicos e Ambientais
18.
Physiol Plant ; 165(3): 537-554, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29704249

RESUMO

We studied how plants acclimated to growing conditions that included combinations of blue light (BL) and ultraviolet (UV)-A radiation, and whether their growing environment affected their photosynthetic capacity during and after a brief period of acute high light (as might happen during an under-canopy sunfleck). Arabidopsis thaliana Landsberg erecta wild-type were compared with mutants lacking functional blue light and UV photoreceptors: phototropin 1, cryptochromes (CRY1 and CRY2) and UV RESISTANT LOCUS 8 (uvr8). This was achieved using light-emitting-diode (LED) lamps in a controlled environment to create treatments with or without BL, in a split-plot design with or without UV-A radiation. We compared the accumulation of phenolic compounds under growth conditions and after exposure to 30 min of high light at the end of the experiment (46 days), and likewise measured the operational efficiency of photosystem II (ϕPSII, a proxy for photosynthetic performance) and dark-adapted maximum quantum yield (Fv /Fm to assess PSII damage). Our results indicate that cryptochromes are the main photoreceptors regulating phenolic compound accumulation in response to BL and UV-A radiation, and a lack of functional cryptochromes impairs photosynthetic performance under high light. Our findings also reveal a role for UVR8 in accumulating flavonoids in response to a low UV-A dose. Interestingly, phototropin 1 partially mediated constitutive accumulation of phenolic compounds in the absence of BL. Low-irradiance BL and UV-A did not improve ϕPSII and Fv /Fm upon our acute high-light treatment; however, CRYs played an important role in ameliorating high-light stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Raios Ultravioleta , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Luz , Mutação , Complexo de Proteína do Fotossistema II/metabolismo
19.
Oecologia ; 191(1): 191-203, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31363838

RESUMO

Sunlight can accelerate the decomposition process through an ensemble of direct and indirect processes known as photodegradation. Although photodegradation is widely studied in arid environments, there have been few studies in temperate regions. This experiment investigated how exposure to solar radiation, and specifically UV-B, UV-A, and blue light, affects leaf litter decomposition under a temperate forest canopy in France. For this purpose, we employed custom-made litterbags built using filters that attenuated different regions of the solar spectrum. Litter mass loss and carbon to nitrogen (C:N) ratio of three species: European ash (Fraxinus excelsior), European beech (Fagus sylvatica) and pedunculate oak (Quercus robur), differing in their leaf traits and decomposition rate, were analysed over a period of 7-10 months. Over the entire period, the effect of treatments attenuating blue light and solar UV radiation on leaf litter decomposition was similar to that of our dark treatment, where litter lost 20-30% less mass and had a lower C:N ratio than under the full-spectrum treatment. Moreover, decomposition was affected more by the filter treatment than mesh size, which controlled access by mesofauna. The effect of filter treatment differed among the three species and appeared to depend on litter quality (and especially C:N), producing the greatest effect in recalcitrant litter (F. sylvatica). Even under the reduced irradiance found in the understorey of a temperate forest, UV radiation and blue light remain important in accelerating surface litter decomposition.


Assuntos
Árvores , Raios Ultravioleta , Florestas , França , Folhas de Planta
20.
Plant Cell Environ ; 38(5): 953-67, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25041067

RESUMO

We hypothesized that solar ultraviolet (UV) radiation would protect silver birch seedlings from the detrimental effects of water stress through a coordinated suite of trait responses, including morphological acclimation, improved control of water loss through gas exchange and hydraulic sufficiency. To better understand how this synergetic interaction works, plants were grown in an experiment under nine treatment combinations attenuating ultraviolet-A and ultraviolet-B (UVB) from solar radiation together with differential watering to create water-deficit conditions. In seedlings under water deficit, UV attenuation reduced height growth, leaf production and leaf length compared with seedlings receiving the full spectrum of solar radiation, whereas the growth and morphology of well-watered seedlings was largely unaffected by UV attenuation. There was an interactive effect of the treatment combination on water relations, which was more apparent as a change in the water potential at which leaves wilted or plants died than through differences in gas exchange. This suggests that changes occur in the cell wall elastic modulus or accumulation of osmolites in cells under UVB. Overall, the strong negative effects of water deficit are partially ameliorated by solar UV radiation, whereas well-watered silver birch seedlings are slightly disadvantaged by the solar UV radiation they receive.


Assuntos
Aclimatação/efeitos da radiação , Betula/efeitos da radiação , Estômatos de Plantas/efeitos da radiação , Plântula/efeitos da radiação , Água/fisiologia , Betula/fisiologia , Clorofila/metabolismo , Secas , Fotossíntese/efeitos da radiação , Plântula/fisiologia , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA