Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Transl Med ; 22(1): 375, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643121

RESUMO

Maladaptive cardiac hypertrophy contributes to the development of heart failure (HF). The oxidoreductase Selenoprotein T (SELENOT) emerged as a key regulator during rat cardiogenesis and acute cardiac protection. However, its action in chronic settings of cardiac dysfunction is not understood. Here, we investigated the role of SELENOT in the pathophysiology of HF: (i) by designing a small peptide (PSELT), recapitulating SELENOT activity via the redox site, and assessed its beneficial action in a preclinical model of HF [aged spontaneously hypertensive heart failure (SHHF) rats] and against isoproterenol (ISO)-induced hypertrophy in rat ventricular H9c2 and adult human AC16 cardiomyocytes; (ii) by evaluating the SELENOT intra-cardiomyocyte production and secretion under hypertrophied stimulation. Results showed that PSELT attenuated systemic inflammation, lipopolysaccharide (LPS)-induced macrophage M1 polarization, myocardial injury, and the severe ultrastructural alterations, while counteracting key mediators of cardiac fibrosis, aging, and DNA damage and restoring desmin downregulation and SELENOT upregulation in the failing hearts. In the hemodynamic assessment, PSELT improved the contractile impairment at baseline and following ischemia/reperfusion injury, and reduced infarct size in normal and failing hearts. At cellular level, PSELT counteracted ISO-mediated hypertrophy and ultrastructural alterations through its redox motif, while mitigating ISO-triggered SELENOT intracellular production and secretion, a phenomenon that presumably reflects the extent of cell damage. Altogether, these results indicate that SELENOT could represent a novel sensor of hypertrophied cardiomyocytes and a potential PSELT-based new therapeutic approach in myocardial hypertrophy and HF.


Assuntos
Insuficiência Cardíaca , Selenoproteínas , Tiorredoxina Dissulfeto Redutase , Adulto , Idoso , Animais , Humanos , Ratos , Insuficiência Cardíaca/metabolismo , Hipertrofia/metabolismo , Isoproterenol/metabolismo , Isoproterenol/farmacologia , Miócitos Cardíacos/metabolismo , Oxirredução , Selenoproteínas/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo
2.
J Transl Med ; 21(1): 635, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726810

RESUMO

A large body of evidence indicates the existence of a complex pathophysiological relationship between cardiovascular diseases and cancer. Mitochondria are crucial organelles whose optimal activity is determined by quality control systems, which regulate critical cellular events, ranging from intermediary metabolism and calcium signaling to mitochondrial dynamics, cell death and mitophagy. Emerging data indicate that impaired mitochondrial quality control drives myocardial dysfunction occurring in several heart diseases, including cardiac hypertrophy, myocardial infarction, ischaemia/reperfusion damage and metabolic cardiomyopathies. On the other hand, diverse human cancers also dysregulate mitochondrial quality control to promote their initiation and progression, suggesting that modulating mitochondrial homeostasis may represent a promising therapeutic strategy both in cardiology and oncology. In this review, first we briefly introduce the physiological mechanisms underlying the mitochondrial quality control system, and then summarize the current understanding about the impact of dysregulated mitochondrial functions in cardiovascular diseases and cancer. We also discuss key mitochondrial mechanisms underlying the increased risk of cardiovascular complications secondary to the main current anticancer strategies, highlighting the potential of strategies aimed at alleviating mitochondrial impairment-related cardiac dysfunction and tumorigenesis. It is hoped that this summary can provide novel insights into precision medicine approaches to reduce cardiovascular and cancer morbidities and mortalities.


Assuntos
Doenças Cardiovasculares , Cardiopatias , Neoplasias , Humanos , Neoplasias/complicações , Carcinogênese , Mitocôndrias
3.
Pharmacol Res ; 168: 105581, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33781873

RESUMO

In-depth characterization of heart-brain communication in critically ill patients with severe acute respiratory failure is attracting significant interest in the COronaVIrus Disease 19 (COVID-19) pandemic era during intensive care unit (ICU) stay and after ICU or hospital discharge. Emerging research has provided new insights into pathogenic role of the deregulation of the heart-brain axis (HBA), a bidirectional flow of information, in leading to severe multiorgan disease syndrome (MODS) in patients with confirmed infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Noteworthy, HBA dysfunction may worsen the outcome of the COVID-19 patients. In this review, we discuss the critical role HBA plays in both promoting and limiting MODS in COVID-19. We also highlight the role of HBA as new target for novel therapeutic strategies in COVID-19 in order to open new translational frontiers of care. This is a translational perspective from the Italian Society of Cardiovascular Researches.


Assuntos
Encefalopatias/terapia , Encéfalo/efeitos dos fármacos , COVID-19/terapia , Cardiopatias/terapia , Coração/efeitos dos fármacos , Corticosteroides/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Antivirais/administração & dosagem , Encéfalo/imunologia , Encéfalo/metabolismo , Encefalopatias/imunologia , Encefalopatias/metabolismo , COVID-19/imunologia , COVID-19/metabolismo , Cuidados Críticos/métodos , Estado Terminal/terapia , Suplementos Nutricionais , Alimento Funcional , Cardiopatias/imunologia , Cardiopatias/metabolismo , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Microvasos/efeitos dos fármacos , Microvasos/imunologia , Microvasos/metabolismo , Insuficiência de Múltiplos Órgãos/imunologia , Insuficiência de Múltiplos Órgãos/metabolismo , Insuficiência de Múltiplos Órgãos/terapia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo
4.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769070

RESUMO

Polyphenols from olive oil are endowed with several biological activities. Chemical modifications have been recently applied to these compounds to improve their therapeutic activity in different pathological settings, including cancer. Herein, we describe the in vitro effects on multiple myeloma (MM) cells of oleil hydroxytyrosol (HTOL), a synthetic fatty ester of natural hydroxytyrosol with oleic acid. HTOL reduced the viability of various human MM cell lines (HMCLs), even when co-cultured with bone marrow stromal cells, triggering ER stress, UPR and apoptosis, while it was not cytotoxic against healthy peripheral blood mononuclear cells or B lymphocytes. Whole-transcriptome profiling of HTOL-treated MM cells, coupled with protein expression analyses, indicate that HTOL antagonizes key survival pathways for malignant plasma cells, including the undruggable IRF4-c-MYC oncogenic axis. Accordingly, c-MYC gain- and loss-of-function strategies demonstrate that HTOL anti-tumor activity was, at least in part, due to c-MYC targeting. Taken together, these findings underscore the anti-MM potential of HTOL, providing the molecular framework for further investigation of HTOL-based treatments as novel anti-cancer agents.


Assuntos
Antineoplásicos/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Álcool Feniletílico/análogos & derivados , Plasmócitos/efeitos dos fármacos , Antineoplásicos/química , Linhagem Celular Tumoral , Humanos , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Álcool Feniletílico/química , Álcool Feniletílico/farmacologia , Plasmócitos/metabolismo , Plasmócitos/patologia , Transdução de Sinais/efeitos dos fármacos
5.
Molecules ; 26(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203324

RESUMO

The antitumor activity of certain anti-inflammatory drugs is often attributed to an indirect effect based on the inhibition of COX enzymes. In the case of anti-inflammatory prodrugs, this property could be attributed to the parent molecules with mechanism other than COX inhibition, particularly through formulations capable of slowing down their metabolic conversion. In this work, a pilot docking study aimed at comparing the interaction of two prodrugs, nabumetone (NB) and its tricyclic analog 7-methoxy-2,3-dihydro-1H-cyclopenta[b]naphthalen-1-one (MC), and their common active metabolite 6-methoxy-2-naphthylacetic acid (MNA) with the COX binding site, was carried out. Cytotoxicity, cytofluorimetry, and protein expression assays on prodrugs were also performed to assess their potential as antiproliferative agents that could help hypothesize an effective use as anticancer therapeutics. Encouraging results suggest that the studied compounds could act not only as precursors of the anti-inflammatory metabolite, but also as direct antiproliferative agents.


Assuntos
Anti-Inflamatórios não Esteroides , Proliferação de Células/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase , Nabumetona , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/farmacologia , Humanos , Células MCF-7 , Nabumetona/síntese química , Nabumetona/química , Nabumetona/farmacologia , Pró-Fármacos/síntese química , Pró-Fármacos/química , Pró-Fármacos/farmacologia
6.
FASEB J ; 33(6): 7734-7747, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30973759

RESUMO

The clinical use of doxorubicin (Doxo), a widely used anticancer chemotherapeutic drug, is limited by dose-dependent cardiotoxicity. We have investigated whether chromogranin A (CgA), a cardioregulatory protein released in the blood by the neuroendocrine system and by the heart itself, may contribute to regulation of the cardiotoxic and antitumor activities of Doxo. The effects of a physiologic dose of full-length recombinant CgA on Doxo-induced cardiotoxicity and antitumor activity were investigated in rats using in vivo and ex vivo models and in murine models of melanoma, fibrosarcoma, lymphoma, and lung cancer, respectively. The effect of Doxo on circulating levels of CgA was also investigated. In vivo and ex vivo mechanistic studies showed that CgA can prevent Doxo-induced heart inflammation, oxidative stress, apoptosis, fibrosis, and ischemic injury. On the other hand, CgA did not impair the anticancer activity of Doxo in all the murine models investigated. Furthermore, we observed that Doxo can reduce the intracardiac expression and release of CgA in the blood (i.e., an important cardioprotective agent). These findings suggest that administration of low-dose CgA to patients with low levels of endogenous CgA might represent a novel approach to prevent Doxo-induced adverse events without impairing antitumor effects.-Rocca, C., Scavello, F., Colombo, B., Gasparri, A. M., Dallatomasina, A., Granieri, M. C., Amelio, D., Pasqua, T., Cerra, M. C., Tota, B., Corti, A., Angelone, T. Physiological levels of chromogranin A prevent doxorubicin-induced cardiotoxicity without impairing its anticancer activity.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Cromogranina A/metabolismo , Doxorrubicina/efeitos adversos , Coração/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Ratos Wistar
7.
Pharmacol Res ; 156: 104766, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32201244

RESUMO

Since the discovery of Nesfatin-1 in 2006, intensive research was finalized to further and deeper investigate the precise physiological functions of the peptide at both central and peripheral levels, rapidly enriching the knowledge regarding this intriguing molecule. Nesfatin-1 is a hypothalamic peptide generated via the post-translational processing of its precursor Nucleobindin 2, a protein supposed to play a role in many biological processes thanks to its ability to bind calcium and to interact with different intracellular proteins. Nesfatin-1 is mainly known for its anorexic properties, but it also controls water intake and glucose homeostasis. Recent experimental evidences describe the peptide as a possible direct/indirect orchestrator of central and peripheral cardiovascular control. A specific Nesfatin-1 receptor still remains to be identified although numerous studies suggest that the peptide activates extra- and intracellular regulatory pathways by involving several putative binding sites. The present paper was designed to systematically review the latest findings about Nesfatin-1, focusing on its cardiovascular regulatory properties under normal and physiopathological conditions. The hope is to provide the conceptual basis to consider Nesfatin-1 not only as a pleiotropic neuroendocrine molecule, but also as a homeostatic modulator of the cardiovascular function and with a crucial role in cardiovascular diseases.


Assuntos
Doenças Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , Nucleobindinas/metabolismo , Animais , Biomarcadores/metabolismo , Doenças Cardiovasculares/fisiopatologia , Sistema Cardiovascular/fisiopatologia , Hemodinâmica , Humanos , Prognóstico , Transdução de Sinais , Pesquisa Translacional Biomédica
8.
Cell Mol Life Sci ; 76(20): 3969-3985, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31218451

RESUMO

Cardiovascular diseases represent one of the most important health problems of developed countries. One of the main actors involved in the onset and development of cardiovascular diseases is the increased production of reactive oxygen species that, through lipid peroxidation, protein oxidation and DNA damage, induce oxidative stress and cell death. Basic and clinical research are ongoing to better understand the endogenous antioxidant mechanisms that counteract oxidative stress, which may allow to identify a possible therapeutic targeting/application in the field of stress-dependent cardiovascular pathologies. In this context, increasing attention is paid to the glutathione/glutathione-peroxidase and to the thioredoxin/thioredoxin-reductase systems, among the most potent endogenous antioxidative systems. These key enzymes, belonging to the selenoprotein family, have a well-established function in the regulation of the oxidative cell balance. The aim of the present review was to highlight the role of selenoproteins in cardiovascular diseases, introducing the emerging cardioprotective role of endoplasmic reticulum-resident members and in particular one of them, namely selenoprotein T or SELENOT. Accumulating evidence indicates that the dysfunction of different selenoproteins is involved in the susceptibility to oxidative stress and its associated cardiovascular alterations, such as congestive heart failure, coronary diseases, impaired cardiac structure and function. Some of them are under investigation as useful pathological biomarkers. In addition, SELENOT exhibited intriguing cardioprotective effects by reducing the cardiac ischemic damage, in terms of infarct size and performance. In conclusion, selenoproteins could represent valuable targets to treat and diagnose cardiovascular diseases secondary to oxidative stress, opening a new avenue in the field of related therapeutic strategies.


Assuntos
Cardiotônicos/uso terapêutico , Doenças Cardiovasculares/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Peptídeos/uso terapêutico , Selenocisteína/metabolismo , Selenoproteínas/genética , Animais , Antioxidantes/metabolismo , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/terapia , Regulação da Expressão Gênica , Glutationa Peroxidase/metabolismo , Humanos , Terapia de Alvo Molecular/métodos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Selenoproteínas/agonistas , Selenoproteínas/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo
9.
J Exp Biol ; 222(Pt 11)2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31085597

RESUMO

Selenoprotein T (SELENOT) is a thioredoxin-like protein, which mediates oxidoreductase functions via its redox active motif Cys-X-X-Sec. In mammals, SELENOT is expressed during ontogenesis and progressively decreases in adult tissues. In the heart, it is re-expressed after ischemia and induces cardioprotection against ischemia-reperfusion (IR) injury. SELENOT is present in teleost fish, including the goldfish Carassius auratus This study aimed to evaluate the cardiac expression of SELENOT, and the effects of exogenous PSELT (a 43-52 SELENOT-derived peptide) on the heart function of C. auratus, a hypoxia tolerance fish model. We found that SELENOT was expressed in cardiac extracts of juvenile and adult fish, located in the sarcoplasmic reticulum (SR) together with calsequestrin-2. Expression increased under acute hypoxia. On ex vivo isolated and perfused goldfish heart preparations, under normoxia, PSELT dose dependently increased stroke volume (VS), cardiac output [Formula: see text] and stroke work (SW), involving cAMP, PKA, L-type calcium channels, SERCA2a pumps and pAkt. Under hypoxia, PSELT did not affect myocardial contractility. Only at higher concentrations (10-8 to 10-7 mol l-1) was an increase of VS and [Formula: see text] observed. It also reduced the cardiac expression of 3-NT, a tissue marker of nitrosative stress, which increases under low oxygen availability. These data are the first to propose SELENOT 43-52 (PSELT) as a cardiac modulator in fish, with a potential protective role under hypoxia.


Assuntos
Coração/fisiologia , Selenoproteínas/metabolismo , Selenoproteínas/farmacologia , Animais , Débito Cardíaco/efeitos dos fármacos , Retículo Endoplasmático , Feminino , Proteínas de Peixes/metabolismo , Carpa Dourada , Coração/efeitos dos fármacos , Hipóxia/fisiopatologia , Masculino , Contração Miocárdica/efeitos dos fármacos , Miocárdio/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
10.
J Cell Mol Med ; 21(12): 3670-3678, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28744974

RESUMO

Patients with ischaemic heart disease or chronic heart failure show altered levels of obestatin, suggesting a role for this peptide in human heart function. We have previously demonstrated that GH secretagogues and the ghrelin gene-derived peptides, including obestatin, exert cardiovascular effects by modulating cardiac inotropism and vascular tone, and reducing cell death and contractile dysfunction in hearts subjected to ischaemia/reperfusion (I/R), through the Akt/nitric oxide (NO) pathway. However, the mechanisms underlying the cardiac actions of obestatin remain largely unknown. Thus, we suggested that obestatin-induced activation of PI3K/Akt/NO and PKG signalling is implicated in protection of the myocardium when challenged by adrenergic, endothelinergic or I/R stress. We show that obestatin exerts an inhibitory tone on the performance of rat papillary muscle in both basal conditions and under ß-adrenergic overstimulation, through endothelial-dependent NO/cGMP/PKG signalling. This pathway was also involved in the vasodilator effect of the peptide, used both alone and under stress induced by endothelin-1. Moreover, when infused during early reperfusion, obestatin reduced infarct size in isolated I/R rat hearts, through an NO/PKG pathway, comprising ROS/PKC signalling, and converging on mitochondrial ATP-sensitive potassium [mitoK(ATP)] channels. Overall, our results suggest that obestatin regulates cardiovascular function in stress conditions and induces cardioprotection by mechanisms dependent on activation of an NO/soluble guanylate cyclase (sGC)/PKG pathway. In fact, obestatin counteracts exaggerated ß-adrenergic and endothelin-1 activity, relevant factors in heart failure, suggesting multiple positive effects of the peptide, including the lowering of cardiac afterload, thus representing a potential candidate in pharmacological post-conditioning.


Assuntos
Cardiotônicos/farmacologia , Infarto do Miocárdio/prevenção & controle , Isquemia Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Óxido Nítrico/metabolismo , Hormônios Peptídicos/farmacologia , Animais , Cardiotônicos/química , Cardiotônicos/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Endotelina-1/antagonistas & inibidores , Endotelina-1/farmacologia , Regulação da Expressão Gênica , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Masculino , Contração Miocárdica/efeitos dos fármacos , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Técnicas de Cultura de Órgãos , Músculos Papilares/efeitos dos fármacos , Músculos Papilares/metabolismo , Músculos Papilares/patologia , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Canais de Potássio/genética , Canais de Potássio/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais , Guanilil Ciclase Solúvel/genética , Guanilil Ciclase Solúvel/metabolismo
11.
J Cell Physiol ; 232(7): 1640-1649, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27607345

RESUMO

The use of Doxorubicin (Dox), a frontline drug for many cancers, is often complicated by dose-limiting cardiotoxicity in approximately 20% of patients. The G-protein estrogen receptor GPER/GPR30 mediates estrogen action as the cardioprotection under certain stressful conditions. For instance, GPER activation by the selective agonist G-1 reduced myocardial inflammation, improved immunosuppression, triggered pro-survival signaling cascades, improved myocardial mechanical performance, and reduced infarct size after ischemia/reperfusion (I/R) injury. Hence, we evaluated whether ligand-activated GPER may exert cardioprotection in male rats chronically treated with Dox. 1 week of G-1 (50 µg/kg/day) intraperitoneal administration mitigated Dox (3 mg/kg/day) adverse effects, as revealed by reduced TNF-α, IL-1ß, LDH, and ROS levels. Western blotting analysis of cardiac homogenates indicated that G-1 prevents the increase in p-c-jun, BAX, CTGF, iNOS, and COX2 expression induced by Dox. Moreover, the activation of GPER rescued the inhibitory action elicited by Dox on the expression of BCL2, pERK, and pAKT. TUNEL assay indicated that GPER activation may also attenuate the cardiomyocyte apoptosis upon Dox exposure. Using ex vivo Langendorff perfused heart technique, we also found an increased systolic recovery and a reduction of both infarct size and LDH levels in rats treated with G-1 in combination with Dox respect to animals treated with Dox alone. Accordingly, the beneficial effects induced by G-1 were abrogated in the presence of the GPER selective antagonist G15. These data suggest that GPER activation mitigates Dox-induced cardiotoxicity, thus proposing GPER as a novel pharmacological target to limit the detrimental cardiac effects of Dox treatment. J. Cell. Physiol. 232: 1640-1649, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Cardiotônicos/uso terapêutico , Cardiotoxicidade/tratamento farmacológico , Doxorrubicina/efeitos adversos , Quinolinas/uso terapêutico , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Animais , Biomarcadores/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Cardiotônicos/farmacologia , Cardiotoxicidade/sangue , Cardiotoxicidade/patologia , Cardiotoxicidade/fisiopatologia , Diástole/efeitos dos fármacos , Testes de Função Cardíaca/efeitos dos fármacos , Humanos , Inflamação/patologia , Interleucina-1beta/sangue , L-Lactato Desidrogenase/sangue , Ligantes , Masculino , Isquemia Miocárdica/sangue , Isquemia Miocárdica/patologia , Isquemia Miocárdica/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Quinolinas/farmacologia , Ratos Wistar , Espécies Reativas de Oxigênio/sangue , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Fator de Necrose Tumoral alfa/sangue , Função Ventricular/efeitos dos fármacos
12.
Antioxid Redox Signal ; 40(7-9): 369-432, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38299513

RESUMO

Significance: Physiological levels of reactive oxygen and nitrogen species (ROS/RNS) function as fundamental messengers for many cellular and developmental processes in the cardiovascular system. ROS/RNS involved in cardiac redox-signaling originate from diverse sources, and their levels are tightly controlled by key endogenous antioxidant systems that counteract their accumulation. However, dysregulated redox-stress resulting from inefficient removal of ROS/RNS leads to inflammation, mitochondrial dysfunction, and cell death, contributing to the development and progression of cardiovascular disease (CVD). Recent Advances: Basic and clinical studies demonstrate the critical role of selenium (Se) and selenoproteins (unique proteins that incorporate Se into their active site in the form of the 21st proteinogenic amino acid selenocysteine [Sec]), including glutathione peroxidase and thioredoxin reductase, in cardiovascular redox homeostasis, representing a first-line enzymatic antioxidant defense of the heart. Increasing attention has been paid to emerging selenoproteins in the endoplasmic reticulum (ER) (i.e., a multifunctional intracellular organelle whose disruption triggers cardiac inflammation and oxidative stress, leading to multiple CVD), which are crucially involved in redox balance, antioxidant activity, and calcium and ER homeostasis. Critical Issues: This review focuses on endogenous antioxidant strategies with therapeutic potential, particularly selenoproteins, which are very promising but deserve more detailed and clinical studies. Future Directions: The importance of selective selenoproteins in embryonic development and the consequences of their mutations and inborn errors highlight the need to improve knowledge of their biological function in myocardial redox signaling. This could facilitate the development of personalized approaches for the diagnosis, prevention, and treatment of CVD. Antioxid. Redox Signal. 40, 369-432.


Assuntos
Doenças Cardiovasculares , Selênio , Humanos , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Selenoproteínas/metabolismo , Selênio/metabolismo , Inflamação
13.
Epigenomics ; 16(6): 359-374, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38440863

RESUMO

Aim: To study the expression of histone methyltransferase SMYD1 in white adipose tissue (WAT) and brown adipose tissue and during differentiation of preadipocytes to white and beige phenotypes. Methods: C57BL/6J mice fed a high-fat diet (and exposed to cold) and 3T3-L1 cells stimulated to differentiate into white and beige adipocytes were used. Results: SMYD1 expression increased in WAT of high-fat diet fed mice and in WAT and brown adipose tissue of cold-exposed mice, suggesting its role in thermogenesis. SMYD1 expression was higher in beige adipocytes than in white adipocytes, and its silencing leads to a decrease in mitochondrial content and in Pgc-1α expression. Conclusion: These data suggest a novel role for SMYD1 as a positive regulator of energy control in adipose tissue.


In this study, a protein called SMYD1 was examined in the adipose tissue of mice to understand its role in the development of different types of fat cells. The authors used mice fed a high-fat diet or mice exposed to a cold environment. The experiments were also performed on cultured cells that were stimulated to form specific types of fat cells (white adipocytes, which store energy; or beige adipocytes, which are responsible for releasing energy in the form of heat). The study found that SMYD1 increased in white adipose tissue particularly in response to cold exposure and high-fat diet, suggesting involvement in body temperature regulation. SMYD1 was higher in beige adipocytes than in white fat cells, and when SMYD1 was reduced, there was a decrease in certain factors related to energy control. Overall, these results suggest that SMYD1 plays a novel role in energy regulation in adipose tissues.


Assuntos
Tecido Adiposo , Termogênese , Animais , Camundongos , Células 3T3-L1 , Histona Metiltransferases , Camundongos Endogâmicos C57BL , Termogênese/genética
14.
J Clin Med ; 12(14)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37510677

RESUMO

Cardiovascular diseases (CVD), including coronary heart disease (CHD), heart attacks, stroke, heart failure (HF), and peripheral artery disease, still represent the leading cause of death globally, taking an estimated 17 [...].

15.
Artigo em Inglês | MEDLINE | ID: mdl-36834186

RESUMO

Cardiac lipotoxicity plays an important role in the pathogenesis of obesity-related cardiovascular disease. The flavonoid quercetin (QUE), a nutraceutical compound that is abundant in the "Mediterranean diet", has been shown to be a potential therapeutic agent in cardiac and metabolic diseases. Here, we investigated the beneficial role of QUE and its derivative Q2, which demonstrates improved bioavailability and chemical stability, in cardiac lipotoxicity. To this end, H9c2 cardiomyocytes were pre-treated with QUE or Q2 and then exposed to palmitate (PA) to recapitulate the cardiac lipotoxicity occurring in obesity. Our results showed that both QUE and Q2 significantly attenuated PA-dependent cell death, although QUE was effective at a lower concentration (50 nM) when compared with Q2 (250 nM). QUE decreased the release of lactate dehydrogenase (LDH), an important indicator of cytotoxicity, and the accumulation of intracellular lipid droplets triggered by PA. On the other hand, QUE protected cardiomyocytes from PA-induced oxidative stress by counteracting the formation of malondialdehyde (MDA) and protein carbonyl groups (which are indicators of lipid peroxidation and protein oxidation, respectively) and intracellular ROS generation, and by improving the enzymatic activities of catalase and superoxide dismutase (SOD). Pre-treatment with QUE also significantly attenuated the inflammatory response induced by PA by reducing the release of key proinflammatory cytokines (IL-1ß and TNF-α). Similar to QUE, Q2 (250 nM) also significantly counteracted the PA-provoked increase in intracellular lipid droplets, LDH, and MDA, improving SOD activity and decreasing the release of IL-1ß and TNF-α. These results suggest that QUE and Q2 could be considered potential therapeutics for the treatment of the cardiac lipotoxicity that occurs in obesity and metabolic diseases.


Assuntos
Miócitos Cardíacos , Quercetina , Humanos , Quercetina/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fator de Necrose Tumoral alfa/metabolismo , Estresse Oxidativo , Inflamação/metabolismo , Superóxido Dismutase/metabolismo
16.
Exp Neurol ; 366: 114432, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37149279

RESUMO

Autism Spectrum Disorder (ASD) is increasing, but its complete etiology is still lacking. Recently, application of ketogenic diet (KD) has shown to reduce abnormal behaviors while improving psychological/sociological status in neurodegenerative diseases. However, KD role on ASD and underlying mechanism remains unknown. In this work, KD administered to BTBR T+ Itpr3tf/J (BTBR) and C57BL/6J (C57) mice reduced social deficits (p = 0.002), repetitive behaviors (p < 0.001) and memory impairments (p = 0.001) in BTBR. Behavioral effects were related to reduced expression levels of tumor necrosis factor alpha, interleukin-1ß, and interleukin-6 in the plasma (p = 0.007; p < 0.001 and p = 0.023, respectively), prefrontal cortex (p = 0.006; p = 0.04 and p = 0.03) and hippocampus (p = 0.02; p = 0.09 and p = 0.03). Moreover, KD accounted for reduced oxidative stress by changing lipid peroxidation levels and superoxide dismutase activity in BTBR brain areas. Interestingly, KD increased relative abundances of putatively beneficial microbiota (Akkermansia and Blautia) in BTBR and C57 mice while reversing the increase of Lactobacillus in BTBR feces. Overall, our findings suggest that KD has a multifunctional role since it improved inflammatory plus oxidative stress levels together with remodeling gut-brain axis. Hence, KD may turn out be a valuable therapeutic approach for ameliorating ASD-like conditions even though more evidence is required to evaluate its effectiveness especially on a long term.


Assuntos
Transtorno do Espectro Autista , Dieta Cetogênica , Microbiota , Camundongos , Animais , Transtorno do Espectro Autista/metabolismo , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos
17.
Eur J Med Chem ; 257: 115542, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37290185

RESUMO

Inspired by the recent advancements in understanding the binding mode of sulfonylurea-based NLRP3 inhibitors to the NLRP3 sensor protein, we developed new NLRP3 inhibitors by replacing the central sulfonylurea moiety with different heterocycles. Computational studies evidenced that some of the designed compounds were able to maintain important interaction within the NACHT domain of the target protein similarly to the most active sulfonylurea-based NLRP3 inhibitors. Among the studied compounds, the 1,3,4-oxadiazol-2-one derivative 5 (INF200) showed the most promising results being able to prevent NLRP3-dependent pyroptosis triggered by LPS/ATP and LPS/MSU by 66.3 ± 6.6% and 61.6 ± 11.5% and to reduce IL-1ß release (35.5 ± 8.8% µM) at 10 µM in human macrophages. The selected compound INF200 (20 mg/kg/day) was then tested in an in vivo rat model of high-fat diet (HFD)-induced metaflammation to evaluate its beneficial cardiometabolic effects. INF200 significantly counteracted HFD-dependent "anthropometric" changes, improved glucose and lipid profiles, and attenuated systemic inflammation and biomarkers of cardiac dysfunction (particularly BNP). Hemodynamic evaluation on Langendorff model indicate that INF200 limited myocardial damage-dependent ischemia/reperfusion injury (IRI) by improving post-ischemic systolic recovery and attenuating cardiac contracture, infarct size, and LDH release, thus reversing the exacerbation of obesity-associated damage. Mechanistically, in post-ischemic hearts, IFN200 reduced IRI-dependent NLRP3 activation, inflammation, and oxidative stress. These results highlight the potential of the novel NLRP3 inhibitor, INF200, and its ability to reverse the unfavorable cardio-metabolic dysfunction associated with obesity.


Assuntos
Traumatismo por Reperfusão Miocárdica , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos , Animais , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos , Lipopolissacarídeos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Inflamação/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Teóricos
18.
Cells ; 12(7)2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-37048116

RESUMO

Cardiac lipotoxicity is an important contributor to cardiovascular complications during obesity. Given the fundamental role of the endoplasmic reticulum (ER)-resident Selenoprotein T (SELENOT) for cardiomyocyte differentiation and protection and for the regulation of glucose metabolism, we took advantage of a small peptide (PSELT), derived from the SELENOT redox-active motif, to uncover the mechanisms through which PSELT could protect cardiomyocytes against lipotoxicity. To this aim, we modeled cardiac lipotoxicity by exposing H9c2 cardiomyocytes to palmitate (PA). The results showed that PSELT counteracted PA-induced cell death, lactate dehydrogenase release, and the accumulation of intracellular lipid droplets, while an inert form of the peptide (I-PSELT) lacking selenocysteine was not active against PA-induced cardiomyocyte death. Mechanistically, PSELT counteracted PA-induced cytosolic and mitochondrial oxidative stress and rescued SELENOT expression that was downregulated by PA through FAT/CD36 (cluster of differentiation 36/fatty acid translocase), the main transporter of fatty acids in the heart. Immunofluorescence analysis indicated that PSELT also relieved the PA-dependent increase in CD36 expression, while in SELENOT-deficient cardiomyocytes, PA exacerbated cell death, which was not mitigated by exogenous PSELT. On the other hand, PSELT improved mitochondrial respiration during PA treatment and regulated mitochondrial biogenesis and dynamics, preventing the PA-provoked decrease in PGC1-α and increase in DRP-1 and OPA-1. These findings were corroborated by transmission electron microscopy (TEM), revealing that PSELT improved the cardiomyocyte and mitochondrial ultrastructures and restored the ER network. Spectroscopic characterization indicated that PSELT significantly attenuated infrared spectral-related macromolecular changes (i.e., content of lipids, proteins, nucleic acids, and carbohydrates) and also prevented the decrease in membrane fluidity induced by PA. Our findings further delineate the biological significance of SELENOT in cardiomyocytes and indicate the potential of its mimetic PSELT as a protective agent for counteracting cardiac lipotoxicity.


Assuntos
Miócitos Cardíacos , Palmitatos , Palmitatos/toxicidade , Palmitatos/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo
19.
Vascul Pharmacol ; 145: 107003, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35680059

RESUMO

Hypertrophic cardiomyopathy (HCM) is an autosomal dominant disorder that associates with nucleotide sequence variants in genes encoding sarcomere related proteins, and is recognized as the most common heritable cardiac diseases. Clinically, HCM can be extremely variable and this makes the diagnosis difficult until the development of serious or fatal events. Nevertheless, the main hallmark of HCM is represented by left ventricle hypertrophy that can be occasionally associated to cardiac arrhythmias, chest pain, diastolic dysfunction, obstruction of left ventricular outflow tract. The present review aims to focus on the complex interplay existing between the multifaceted non-genetic molecular mechanisms underlying HCM onset and progression, and the key pathophysiological role of abnormal coronary artery function. As the clinical course of HCM shows a mortality rate per year up to 6% the importance of innovative therapeutic strategies will be discussed, especially in regard to the use of potential endogenous coronary modulators to be enrolled as modifiers of HCM phenotype.


Assuntos
Cardiomiopatia Hipertrófica , Cardiomiopatia Hipertrófica/complicações , Cardiomiopatia Hipertrófica/tratamento farmacológico , Cardiomiopatia Hipertrófica/genética , Coração , Humanos , Hipertrofia Ventricular Esquerda , Fenótipo , Sarcômeros/genética , Sarcômeros/metabolismo
20.
Antioxidants (Basel) ; 11(3)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35326221

RESUMO

Oxidative stress and endoplasmic reticulum stress (ERS) are strictly involved in myocardial ischemia/reperfusion (MI/R). Selenoprotein T (SELENOT), a vital thioredoxin-like selenoprotein, is crucial for ER homeostasis and cardiomyocyte differentiation and protection, likely acting as a redox-sensing protein during MI/R. Here, we designed a small peptide (PSELT), encompassing the redox site of SELENOT, and investigated whether its pre-conditioning cardioprotective effect resulted from modulating ERS during I/R. The Langendorff rat heart model was employed for hemodynamic analysis, while mechanistic studies were performed in perfused hearts and H9c2 cardiomyoblasts. PSELT improved the post-ischemic contractile recovery, reducing infarct size and LDH release with and without the ERS inducer tunicamycin (TM). Mechanistically, I/R and TM upregulated SELENOT expression, which was further enhanced by PSELT. PSELT also prevented the expression of the ERS markers CHOP and ATF6, reduced cardiac lipid peroxidation and protein oxidation, and increased SOD and catalase activities. An inert PSELT (I-PSELT) lacking selenocysteine was ineffective. In H9c2 cells, H2O2 decreased cell viability and SELENOT expression, while PSELT rescued protein levels protecting against cell death. In SELENOT-deficient H9c2 cells, H2O2 exacerbated cell death, that was partially mitigated by PSELT. Microscopy analysis revealed that a fluorescent form of PSELT was internalized into cardiomyocytes with a perinuclear distribution. Conclusions: The cell-permeable PSELT is able to induce pharmacological preconditioning cardioprotection by mitigating ERS and oxidative stress, and by regulating endogenous SELENOT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA