Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 7(5): e1002064, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21589895

RESUMO

The molecular mechanisms of plant recognition, colonization, and nutrient exchange between diazotrophic endophytes and plants are scarcely known. Herbaspirillum seropedicae is an endophytic bacterium capable of colonizing intercellular spaces of grasses such as rice and sugar cane. The genome of H. seropedicae strain SmR1 was sequenced and annotated by The Paraná State Genome Programme--GENOPAR. The genome is composed of a circular chromosome of 5,513,887 bp and contains a total of 4,804 genes. The genome sequence revealed that H. seropedicae is a highly versatile microorganism with capacity to metabolize a wide range of carbon and nitrogen sources and with possession of four distinct terminal oxidases. The genome contains a multitude of protein secretion systems, including type I, type II, type III, type V, and type VI secretion systems, and type IV pili, suggesting a high potential to interact with host plants. H. seropedicae is able to synthesize indole acetic acid as reflected by the four IAA biosynthetic pathways present. A gene coding for ACC deaminase, which may be involved in modulating the associated plant ethylene-signaling pathway, is also present. Genes for hemagglutinins/hemolysins/adhesins were found and may play a role in plant cell surface adhesion. These features may endow H. seropedicae with the ability to establish an endophytic life-style in a large number of plant species.


Assuntos
Genoma de Planta , Herbaspirillum/genética , Cromossomos de Plantas , Herbaspirillum/metabolismo , Interações Hospedeiro-Patógeno , Fixação de Nitrogênio , Pressão Osmótica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Microb Cell Fact ; 9: 4, 2010 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-20092622

RESUMO

BACKGROUND: In spite of its advantageous physiological properties for bioprocess applications, the use of the yeast Kluyveromyces marxianus as a host for heterologous protein production has been very limited, in constrast to its close relative Kluyveromyces lactis. In the present work, the model protein glucose oxidase (GOX) from Aspergillus niger was cloned into K. marxianus CBS 6556 and into K. lactis CBS 2359 using three different expression systems. We aimed at verifying how each expression system would affect protein expression, secretion/localization, post-translational modification, and biochemical properties. RESULTS: The highest GOX expression levels (1552 units of secreted protein per gram dry cell weight) were achieved using an episomal system, in which the INU1 promoter and terminator were used to drive heterologous gene expression, together with the INU1 prepro sequence, which was employed to drive secretion of the enzyme. In all cases, GOX was mainly secreted, remaining either in the periplasmic space or in the culture supernatant. Whereas the use of genetic elements from Saccharomyces cerevisiae to drive heterologous protein expression led to higher expression levels in K. lactis than in K. marxianus, the use of INU1 genetic elements clearly led to the opposite result. The biochemical characterization of GOX confirmed the correct expression of the protein and showed that K. marxianus has a tendency to hyperglycosylate the protein, in a similar way as already observed for other yeasts, although this tendency seems to be smaller than the one of e.g. K. lactis and S. cerevisiae. Hyperglycosylation of GOX does not seem to affect its affinity for the substrate, nor its activity. CONCLUSIONS: Taken together, our results indicate that K. marxianus is indeed a good host for the expression of heterologous proteins, not only for its physiological properties, but also because it correctly secretes and folds these proteins.


Assuntos
Aspergillus niger/enzimologia , Proteínas Fúngicas/genética , Expressão Gênica , Glucose Oxidase/genética , Kluyveromyces/genética , Proteínas Fúngicas/metabolismo , Glucose Oxidase/metabolismo , Kluyveromyces/metabolismo , Transporte Proteico
3.
Appl Biochem Biotechnol ; 118(1-3): 305-12, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15304758

RESUMO

Cassava bagasse was hydrolyzed using HCl and the hydrolysate was used for the production of xanthan gum using a bacterial culture of Xanthomonas campestris. Cassava bagasse hydrolysate with an initial concentration of approx 20 g of glucose/L proved to be the best substrate concentration for xanthan gum production. Among the organic and inorganic nitrogen sources tested to supplement the medium-urea, yeast extract, peptone, potassium nitrate, and ammonium sulfate-potassium nitrate was most suitable. Ammonium sulfate was the least effective for xanthan gum production, and it affected sugar utilization by the bacterial culture. In media with an initial sugar concentration of 48.6 and 40.4 g/L, at the end of fermentation about 30 g/L of sugars was unused. Maximum xanthan gum (about 14 g/L) was produced when fermentation was carried out with a medium containing 19.8 g/L of initial reducing sugars supplemented with potassium nitrate and fermented for 72 h, and it remained almost the same until the end of fermentation (i.e., 96 h).


Assuntos
Polissacarídeos Bacterianos/biossíntese , Xanthomonas campestris/metabolismo , Manihot/metabolismo , Nitrogênio/metabolismo , Extratos Vegetais/metabolismo , Estruturas Vegetais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA