Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1834(12): 2663-71, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24076009

RESUMO

NADPH-dependent glyoxylate reductases from Arabidopsis thaliana (AtGLYR) convert both glyoxylate and succinic semialdehyde into their corresponding hydroxyacid equivalents. The primary sequence of cytosolic AtGLYR1 reveals several sequence elements that are consistent with the ß-HAD (ß-hydroxyacid dehydrogenase) protein family, whose members include 3-hydroxyisobutyrate dehydrogenase, tartronate semialdehyde reductase and 6-phosphogluconate dehydrogenase. Here, site-directed mutagenesis was utilized to identify catalytically important amino acid residues for glyoxylate reduction in AtGLYR1. Kinetic studies and binding assays established that Lys170 is essential for catalysis, Phe231, Asp239, Ser121 and Thr95 are more important in substrate binding than in catalysis, and Asn174 is more important in catalysis. The low activity of the mutant enzymes precluded kinetic studies with succinic semialdehyde. The crystal structure of AtGLYR1 in the absence of substrate was solved to 2.1Å by molecular replacement using a previously unrecognized member of the ß-HAD family, cytokine-like nuclear factor, thereby enabling the 3-D structure of the protein to be modeled with substrate and co-factor. Structural alignment of AtGLYR1 with ß-HAD family members provided support for the essentiality of Lys170, Phe173, Asp239, Ser121, Asn174 and Thr95 in the active site and preliminary support for an acid/base catalytic mechanism involving Lys170 as the general acid and a conserved active-site water molecule. This information established that AtGLYR1 is a member of the ß-HAD protein family. Sequence and activity comparisons indicated that AtGLYR1 and the plastidial AtGLYR2 possess structural features that are absent in Arabidopsis hydroxypyruvate reductases and probably account for their stronger preference for glyoxylate over hydroxypyruvate.


Assuntos
Oxirredutases do Álcool/química , Aminoácidos/química , Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Proteínas de Cloroplastos/química , Glioxilatos/química , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Substituição de Aminoácidos , Aminoácidos/genética , Aminoácidos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Domínio Catalítico , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cristalografia por Raios X , Glioxilatos/metabolismo , Mutação de Sentido Incorreto , Oxirredução , Relação Estrutura-Atividade , Especificidade por Substrato
2.
J Biol Chem ; 287(49): 41089-102, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-22992735

RESUMO

We identified Certhrax, the first anthrax-like mART toxin from the pathogenic G9241 strain of Bacillus cereus. Certhrax shares 31% sequence identity with anthrax lethal factor from Bacillus anthracis; however, we have shown that the toxicity of Certhrax resides in the mART domain, whereas anthrax uses a metalloprotease mechanism. Like anthrax lethal factor, Certhrax was found to require protective antigen for host cell entry. This two-domain enzyme was shown to be 60-fold more toxic to mammalian cells than anthrax lethal factor. Certhrax localizes to distinct regions within mouse RAW264.7 cells by 10 min postinfection and is extranuclear in its cellular location. Substitution of catalytic residues shows that the mART function is responsible for the toxicity, and it binds NAD(+) with high affinity (K(D) = 52.3 ± 12.2 µM). We report the 2.2 Å Certhrax structure, highlighting its structural similarities and differences with anthrax lethal factor. We also determined the crystal structures of two good inhibitors (P6 (K(D) = 1.7 ± 0.2 µM, K(i) = 1.8 ± 0.4 µM) and PJ34 (K(D) = 5.8 ± 2.6 µM, K(i) = 9.6 ± 0.3 µM)) in complex with Certhrax. As with other toxins in this family, the phosphate-nicotinamide loop moves toward the NAD(+) binding site with bound inhibitor. These results indicate that Certhrax may be important in the pathogenesis of B. cereus.


Assuntos
ADP Ribose Transferases/química , Antraz/metabolismo , Antígenos de Bactérias/química , Bacillus cereus/metabolismo , Proteínas de Bactérias/química , Toxinas Bacterianas/química , Difosfato de Adenosina/química , Sequência de Aminoácidos , Animais , Bacillus cereus/patogenicidade , Infecções Bacterianas/metabolismo , Linhagem Celular , Clonagem Molecular , Cristalografia por Raios X/métodos , Glicosídeo Hidrolases/química , Concentração Inibidora 50 , Cinética , Ligantes , Camundongos , Conformação Molecular , Dados de Sequência Molecular , NAD/química , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
3.
Plant Cell ; 21(11): 3700-13, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19915088

RESUMO

TGA2 and NONEXPRESSER OF PR GENES1 (NPR1) are activators of systemic acquired resistance (SAR) and of the SAR marker gene pathogenesis-related-1 (PR-1) in Arabidopsis thaliana. TGA2 is a transcriptional repressor required for basal repression of PR-1, but during SAR, TGA2 recruits NPR1 as part of an enhanceosome. Transactivation by the enhanceosome requires the NPR1 BTB/POZ domain. However, the NPR1 BTB/POZ domain does not contain an autonomous transactivation domain; thus, its molecular role within the enhanceosome remains elusive. We now show by gel filtration analyses that TGA2 binds DNA as a dimer, tetramer, or oligomer. Using in vivo plant transcription assays, we localize the repression domain of TGA2 to the N terminus and demonstrate that this domain is responsible for modulating the DNA binding activity of the oligomer both in vitro and in vivo. We confirm that the NPR1 BTB/POZ domain interacts with and negates the molecular function of the TGA2 repression domain by excluding TGA2 oligomers from cognate DNA. These data distinguish the NPR1 BTB/POZ domain from other known BTB/POZ domains and establish its molecular role in the context of the Arabidopsis PR-1 gene enhanceosome.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação da Expressão Gênica de Plantas/genética , Imunidade Inata/genética , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/química , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Cromatografia em Gel , DNA de Plantas/genética , DNA de Plantas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos/genética , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Organelas/genética , Estrutura Terciária de Proteína/genética , Ativação Transcricional/genética
4.
J Integr Plant Biol ; 54(3): 152-68, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22309191

RESUMO

Glyoxylate reductase (GLYR) is a key enzyme in plant metabolism which catalyzes the detoxification of both photorespiratory glyoxylate and succinic semialdehdye, an intermediate of the γ-aminobutyrate (GABA) pathway. Two isoforms of GLYR exist in plants, GLYR1 and GLYR2, and while GLYR2 is known to be localized in plastids, GLYR1 has been reported to be localized in either peroxisomes or the cytosol. Here, we reappraised the intracellular localization of GLYR1 in Arabidopsis thaliana L. Heynh (ecotype Lansberg erecta) using both transiently-transformed suspension cells and stably-transformed plants, in combination with fluorescence microscopy. The results indicate that GLYR1 is localized exclusively to the cytosol regardless of the species, tissue and/or cell type, or exposure of plants to environmental stresses that would increase flux through the GABA pathway. Moreover, the C-terminal tripeptide sequence of GLYR1, -SRE, despite its resemblance to a type 1 peroxisomal targeting signal, is not sufficient for targeting to peroxisomes. Collectively, these results define the cytosol as the intracellular location of GLYR1 and provide not only important insight to the metabolic roles of GLYR1 and the compartmentation of the GABA and photorespiratory pathways in plant cells, but also serve as a useful reference for future studies of proteins proposed to be localized to peroxisomes and/or the cytosol.


Assuntos
Oxirredutases do Álcool/metabolismo , Arabidopsis/citologia , Arabidopsis/enzimologia , Citosol/enzimologia , Peroxissomos/enzimologia , Células Vegetais/enzimologia , Oxirredutases do Álcool/química , Sequência de Aminoácidos , Células Cultivadas , Proteínas de Fluorescência Verde/metabolismo , Isoenzimas/química , Isoenzimas/metabolismo , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Fotodegradação , Folhas de Planta/citologia , Folhas de Planta/enzimologia , Sinais Direcionadores de Proteínas , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Reprodutibilidade dos Testes , Plântula/citologia , Plântula/enzimologia , Estresse Fisiológico , Suspensões , Nicotiana/citologia
5.
Physiol Plant ; 141(4): 361-72, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21214879

RESUMO

Cytosolic glutamine synthetase (GS1) is responsible for the primary assimilation of ammonia, and a role in nitrogen (N) remobilization is implicated from its vascular localization and enhanced expression during senescence. This paper tested the hypothesis that overexpression (OX) of GS1 in rice improves utilization N use efficiency (UtE = spikelet yield/shoot N content). Three GS1 OX lines were identified using activity assays and quantitative polymerase chain reaction. Physiological analysis of the OX lines, as well as azygous and wild-type (Wt) controls, was conducted with mature plants after growth under varying nitrate conditions (non-limiting N, limiting N, transfer from non-limiting N to limiting N at panicle emergence) and growth environments (growth chamber vs greenhouse). Overall, OX lines did not differ from azygous controls in vegetative yield or shoot N content. In two of the three growth trials (i.e. the growth chamber trials) harvest index, N harvest index (spikelet N content/shoot N content) and UtE were generally enhanced in the OX lines relative to their azygous controls. These characteristics were highly correlated with percent spikelets filled and spikelet number. Thus, N partitioning in rice during grain filling could be altered by GS1 OX, resulting in improved UtE. Unfortunately, GS OX did not result in more efficient use of N under limiting N than under non-limiting N, and is therefore unlikely to result in the use of less N under field conditions. Transformation effects significantly hindered the productivity of the OX lines, but backcrossing to the Wt should overcome this.


Assuntos
Glutamato-Amônia Ligase/metabolismo , Nitrogênio/metabolismo , Oryza/enzimologia , Proteínas de Plantas/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutamato-Amônia Ligase/genética , Mutagênese Insercional/efeitos dos fármacos , Nitrogênio/farmacologia , Oryza/genética , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas
6.
Plant Cell Environ ; 32(12): 1749-60, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19682292

RESUMO

Development of genetic varieties with improved nitrogen-use efficiency (NUE) is essential for sustainable agriculture. In this study, we developed a growth system for rice wherein N was the growth-limiting factor, and identified N-responsive genes by a whole genome transcriptional profiling approach. Some genes were selected to test their functionality in NUE by a transgenic approach. One such example with positive effects on NUE is an early nodulin gene OsENOD93-1. This OsENOD93-1 gene responded significantly to both N induction and N reduction. Transgenic rice plants over-expressing the OsENOD93-1 gene had increased shoot dry biomass and seed yield. This OsENOD93-1 gene was expressed at high levels in roots of wild-type (WT) plants, and its protein product was localized in mitochondria. Transgenic plants accumulated higher concentrations of total amino acids and total N in roots. A higher concentration of amino acids in xylem sap was detected in transgenic plants, especially under N stress. In situ hybridization revealed that OsENOD93-1 is expressed in vascular bundles, as well as in epidermis and endodermis. This work demonstrates that transcriptional profiling, coupled with a transgenic validation approach, is an effective strategy for gene discovery. The knowledge gained from this study could be applied to other important crops.


Assuntos
Perfilação da Expressão Gênica , Proteínas de Membrana/metabolismo , Nitrogênio/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Aminoácidos/metabolismo , Sequência de Bases , Biomassa , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Proteínas de Membrana/genética , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/genética , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/genética , Sementes/metabolismo , Xilema/metabolismo
7.
Plant Cell ; 18(12): 3670-85, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17172357

RESUMO

NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) regulates systemic acquired resistance (SAR) in Arabidopsis thaliana, and current models propose that after treatment with salicylic acid (SA), Cys-82 and Cys-216 of NPR1 are reduced, leading to nuclear import. The interaction of nucleus-localized NPR1 with TGA transcription factors results in the activation of defense genes, including the SAR marker PATHOGENESIS-RELATED-1 (PR-1), and the deployment of SAR. Little is known about how TGA factors or NPR1 regulate transcription or whether a TGA-NPR1 complex forms on DNA. We show that TGA2 and NPR1 are recruited to PR-1 independently of each other and of SA treatment. Consistent with the result that a triple knockout in TGA2/5/6 derepresses PR-1, in vivo plant transcription assays revealed that TGA2 is not an autonomous transcription activator but is a transcriptional repressor in both untreated and SA-treated cells. However, after stimulation with SA, TGA2 is incorporated into a transactivating complex with NPR1, forming an enhanceosome that requires the core of the NPR1 BTB/POZ domain (residues 80 to 91) and the oxidation of NPR1 Cys-521 and Cys-529. These Cys residues are found in a new type of transactivation domain that we term Cys-oxidized. These data further our understanding of the mechanism by which TGA2 and NPR1 activate Arabidopsis PR-1.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cisteína/metabolismo , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Modelos Genéticos , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oxirredução/efeitos dos fármacos , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Estrutura Terciária de Proteína/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ácido Salicílico/farmacologia , Relação Estrutura-Atividade , Ativação Transcricional/efeitos dos fármacos
8.
J Org Chem ; 69(2): 563-5, 2004 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-14725475

RESUMO

The NBS-mediated oxidative fragmentation of benzilidene acetals has been investigated with mechanistic probes 12, 14, and 18 designed to discriminate between the possible competitive pathways. Results indicate that fragmentation of the initial benzylic radical 19 does not occur spontaneously but that oxidation proceeds rapidly to give the benzyl bromide 20, which then fragments via a polar pathway. Reversed regiospecificity in the fragmentation is demonstrated for the first time through the incorporation of an allylic alcohol into the benzilidene acetal.

9.
Plant Cell ; 15(9): 2181-91, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12953119

RESUMO

The Arabidopsis NPR1 protein is essential for regulating salicylic acid-dependent gene expression during systemic acquired resistance. NPR1 interacts differentially with members of the TGA class of basic domain/Leu zipper transcription factors and regulates their DNA binding activity. Here, we report that although TGA1 does not interact with NPR1 in yeast two-hybrid assays, treatment with salicylic acid induces the interaction between these proteins in Arabidopsis leaves. This phenomenon is correlated with a reduction of TGA1 Cys residues. Furthermore, site-directed mutagenesis of TGA1 Cys-260 and Cys-266 enables the interaction with NPR1 in yeast and Arabidopsis. Together, these results indicate that TGA1 relies on the oxidation state of Cys residues to mediate the interaction with NPR1. An intramolecular disulfide bridge in TGA1 precludes interaction with NPR1, and NPR1 can only stimulate the DNA binding activity of the reduced form of TGA1. Unlike its animal and yeast counterparts, the DNA binding activity of TGA1 is not redox regulated; however, this property is conferred by interaction with the NPR1 cofactor.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares , Sequência de Aminoácidos , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Bactérias/crescimento & desenvolvimento , Fatores de Transcrição de Zíper de Leucina Básica , Cisteína/metabolismo , Proteínas de Ligação a DNA/genética , Imunidade Inata/genética , Zíper de Leucina/genética , Dados de Sequência Molecular , Mutação , Oxirredução/efeitos dos fármacos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/genética , Ácido Salicílico/farmacologia , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA