Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 78(5): 2169-2183, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32889561

RESUMO

Cerebral ischemia-reperfusion increases intraneuronal levels of ubiquitinated proteins, but the factors driving ubiquitination and whether it results from altered proteostasis remain unclear. To address these questions, we used in vivo and in vitro models of cerebral ischemia-reperfusion, in which hippocampal slices were transiently deprived of oxygen and glucose to simulate ischemia followed by reperfusion, or the middle cerebral artery was temporarily occluded in mice. We found that post-ischemic ubiquitination results from two key steps: restoration of ATP at reperfusion, which allows initiation of protein ubiquitination, and free radical production, which, in the presence of sufficient ATP, increases ubiquitination above pre-ischemic levels. Surprisingly, free radicals did not augment ubiquitination through inhibition of the proteasome as previously believed. Although reduced proteasomal activity was detected after ischemia, this was neither caused by free radicals nor sufficient in magnitude to induce appreciable accumulation of proteasomal target proteins or ubiquitin-proteasome reporters. Instead, we found that ischemia-derived free radicals inhibit deubiquitinases, a class of proteases that cleaves ubiquitin chains from proteins, which was sufficient to elevate ubiquitination after ischemia. Our data provide evidence that free radical-dependent deubiquitinase inactivation rather than proteasomal inhibition drives ubiquitination following ischemia-reperfusion, and as such call for a reevaluation of the mechanisms of post-ischemic ubiquitination, previously attributed to altered proteostasis. Since deubiquitinase inhibition is considered an endogenous neuroprotective mechanism to shield proteins from oxidative damage, modulation of deubiquitinase activity may be of therapeutic value to maintain protein integrity after an ischemic insult.


Assuntos
Isquemia Encefálica/metabolismo , Enzimas Desubiquitinantes/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinação , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Hipocampo/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Ubiquitina/metabolismo
2.
J Immunother Cancer ; 10(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35190376

RESUMO

BACKGROUND: Cancer-associated neoantigens (neoAg) derived from tumor genomic sequencing and predictive algorithms for mutated peptides are a promising basis for therapeutic vaccines under investigation. Although these are generally designed to bind major histocompatibility complex class I and induce CD8 cytolytic T lymphocyte (CTL) activity, results from preclinical and clinical studies demonstrate that the majority of neoAg vaccines efficiently induce CD4 T helper (Th) responses but not CTL. Despite this, these vaccines have demonstrated clinical efficacy. Therefore, understanding the mechanisms of CD4 + T cell-mediated tumor protection is critical to optimizing this immunotherapeutic strategy. METHODS: We investigated this phenomenon in the mineral oil-induced plasmacytoma (MOPC).315.BM (MOPC315) mouse model of multiple myeloma, a malignancy of plasma cells. MOPC315 cells express in their lambda chain a unique tumor-specific neoAg, an idiotypic (Id) peptide. We generated a vaccine formulated with this Id peptide fused to a heat shock protein HSC70 binding (HSB) motif co-delivered with poly (I:C). The immunogenicity of the Id-vaccine was measured in splenocytes by ELISpot. Mice were challenged with MOPC315 cells and antitumor immunity was assessed by co-incubating splenocytes and bone marrow mononuclear cells derived from vaccinated mice and controls, with the Id antigen and irradiated MOPC315 cells. The frequency of activated CD4 and CD8 T cells and their phenotype were characterized by flow cytometry. RESULTS: Id-vaccine efficiently induced antigen-specific CD4 Th activity and antitumor immunity, protecting mice from MOPC315 tumor growth. CD4 cytolytic activity was not detected under these conditions. Polyfunctional CD8 T cells homed to the bone marrow microenvironment of protected mice and preferentially expanded only when restimulated ex vivo with both Id peptide and MOPC315 cells. Protective activity was abrogated by depletion of either CD4 or CD8 lymphocytes. CONCLUSION: These results demonstrate that Id-HSB +poly (I:C) vaccine protects against MOPC315 growth by priming Id-specific CD4 Th cells that confer protection against tumor but are not directly cytotoxic. These data indicate that activation of CD8 CTL against MOPC315-associated antigens not present in the vaccine is one of the major mechanisms of tumor immunity.


Assuntos
Antígenos de Neoplasias/uso terapêutico , Linfócitos T CD4-Positivos/imunologia , Vacinas Anticâncer/uso terapêutico , Ativação Linfocitária/imunologia , Mieloma Múltiplo/tratamento farmacológico , Animais , Antígenos de Neoplasias/farmacologia , Vacinas Anticâncer/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Mieloma Múltiplo/patologia , Microambiente Tumoral
3.
Biotechniques ; 68(5): 240-244, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32054310

RESUMO

Conventional genomic DNA (gDNA) extraction methods can take hours to complete, may require fume hoods and represent the most time-consuming step in many gDNA-based molecular assays. We systematically optimized a bead bashing-based (BBB) approach for rapid gDNA extraction without the need for a fume hood. Human tissue specimens (n = 34) subjected to the 12-min BBB method yielded 0.40 ± 0.17 (mean ± SD) µg of gDNA per milligram of tissue, sufficient for many downstream applications, and 3- and 6-min extensions resulted in an additional 0.43 ± 0.23 µg and 0.48 ± 0.43 µg per milligram of tissue, respectively. The BBB method provides a simple and rapid method for gDNA extraction from mammalian tissue that is applicable to time-sensitive clinical applications.


Assuntos
DNA/isolamento & purificação , Técnicas Genéticas , Vilosidades Coriônicas/química , DNA/genética , Genoma Humano/genética , Humanos
4.
Sci Rep ; 8(1): 6802, 2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29700368

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

5.
Sci Rep ; 8(1): 2701, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29426953

RESUMO

Protein aggregation critically affects cell viability in neurodegenerative diseases, but whether this also occurs in ischemic brain injury remains elusive. Prior studies report the post-ischemic aggregation of ubiquitin, small ubiquitin-related modifier (SUMO) and ribosomes, however whether other proteins are also affected is unknown. Here we employed a proteomic approach to identify the insoluble, aggregated proteome after cerebral ischemia. Mice underwent transient middle cerebral artery occlusion or sham-surgery. After 1-hour reperfusion, prior to apparent brain injury, mice were sacrificed and detergent-insoluble proteins were obtained and identified by nanoLC-MS/MS. Naturally existing insoluble proteins were determined in sham controls and aggregated proteins after cerebral ischemia/reperfusion were identified. Selected aggregated proteins found by proteomics were biochemically verified and aggregation propensities were studied during ischemia with or without reperfusion. We found that ischemia/reperfusion induces the aggregation of RNA-binding and heat-shock proteins, ubiquitin, SUMO and other proteins involved in cell signalling. RNA-binding proteins constitute the largest group of aggregating proteins in ischemia. These include TDP43, FUS, hnRNPA1, PSF/SFPQ and p54/NONO, all of which have been linked to neurodegeneration associated with amyotrophic lateral sclerosis and frontotemporal dementia. The aggregation of neurodegeneration-related disease proteins in cerebral ischemia unveils a previously unappreciated molecular overlap between neurodegenerative diseases and ischemic stroke.


Assuntos
Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatologia , Animais , Infarto Cerebral , Circulação Cerebrovascular/fisiologia , Hipocampo/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/fisiopatologia , Ataque Isquêmico Transitório , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Artéria Cerebral Média/fisiopatologia , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Agregados Proteicos/fisiologia , Proteômica/métodos , Reperfusão , Traumatismo por Reperfusão/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Acidente Vascular Cerebral/metabolismo , Espectrometria de Massas em Tandem , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA