Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mov Disord ; 36(9): 2162-2172, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33998063

RESUMO

BACKGROUND: Apathy, a common neuropsychiatric disturbance in Huntington's disease (HD), is subserved by a complex neurobiological network. However, no study has yet employed a whole-brain approach to examine underlying regional vulnerabilities that may precipitate apathy changes over time. OBJECTIVES: To identify whole-brain gray matter volume (GMV) vulnerabilities that may predict longitudinal apathy development in HD. METHODS: Forty-five HD individuals (31 female) were scanned and evaluated for apathy and other neuropsychiatric features using the short-Problem Behavior Assessment for a maximum total of six longitudinal visits (including baseline). In order to identify regions where changes in GMV may describe changes in apathy, we performed longitudinal voxel-based morphometry (VBM) on those 33 participants with a magnetic resonance imaging (MRI) scan on their second visit at 18 ± 6 months follow-up (78 MRI datasets). We next employed a generalized linear mixed-effects model (N = 45) to elucidate whether initial and specific GMV may predict apathy development over time. RESULTS: Utilizing longitudinal VBM, we revealed a relationship between increases in apathy and specific GMV atrophy in the right middle cingulate cortex (MCC). Furthermore, vulnerability in the right MCC volume at baseline successfully predicted the severity and progression of apathy over time. CONCLUSIONS: This study highlights that individual differences in apathy in HD may be explained by variability in atrophy and initial vulnerabilities in the right MCC, a region implicated in action-initiation. These findings thus serve to facilitate the prediction of an apathetic profile, permitting targeted, time-sensitive interventions in neurodegenerative disease with potential implications in otherwise healthy populations. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Apatia , Doença de Huntington , Doenças Neurodegenerativas , Encéfalo/diagnóstico por imagem , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Doença de Huntington/diagnóstico por imagem , Imageamento por Ressonância Magnética
2.
Hum Brain Mapp ; 39(1): 54-71, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28990240

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder which is primarily associated with striatal degeneration. However, the alterations in connectivity of this structure in HD have been underinvestigated. In this study, we analyzed the functional and structural connectivity of the left putamen, while participants performed a finger-tapping task. Using fMRI and DW-MRI, 30 HD gene expansion carriers (HDGEC) and 29 healthy participants were scanned. Psychophysiological interaction analysis and DTI-based tractography were employed to examine functional and structural connectivity, respectively. Manifest HDGEC exhibited a reduced functional connectivity of the left putamen with the left and the right primary sensorimotor areas (SM1). Based on this result, the inhibitory functional connectivity between the left SM1 and the right SM1 was explored, appearing to be also decreased. In addition, the tract connecting these areas (motor corpus callosum), and the tract connecting the left putamen with the left SM1 appeared disrupted in HDGEC compared to controls. Significant correlations were found between measures of functional and structural connectivity of the motor corpus callosum, showing a coupling of both types of alterations in this tract. The observed reduction of functional and structural connectivity was associated with worse motor scores, which highlights the clinical relevance of these results. Hum Brain Mapp 39:54-71, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiopatologia , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/fisiopatologia , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/fisiopatologia , Adulto , Imagem de Tensor de Difusão , Feminino , Dedos/fisiopatologia , Heterozigoto , Humanos , Doença de Huntington/genética , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Atividade Motora/fisiologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia
3.
Brain Behav ; 14(3): e3335, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38450912

RESUMO

BACKGROUND: Despite its impact on daily life, impulsivity in Huntington's disease (HD) is understudied as a neuropsychiatric symptom. Our aim is to characterize temporal impulsivity in HD and to disentangle the white matter correlate associated with impulsivity. METHODS: Forty-seven HD individuals and 36 healthy controls were scanned and evaluated for temporal impulsivity using a delay-discounting (DD) task and complementary Sensitivity to Punishment and Sensitivity to Reward Questionnaire. Diffusion tensor imaging was employed to characterize the structural connectivity of three limbic tracts: the uncinate fasciculus (UF), the accumbofrontal tract (NAcc-OFC), and the dorsolateral prefrontal cortex connectig the caudate nucleus (DLPFC-cn). Multiple linear regression analyses were applied to analyze the relationship between impulsive behavior and white matter microstructural integrity. RESULTS: Our results revealed altered structural connectivity in the DLPC-cn, the NAcc-OFC and the UF in HD individuals. At the same time, the variability in structural connectivity of these tracts was associated with the individual differences in temporal impulsivity. Specifically, increased structural connectivity in the right NAcc-OFC and reduced connectivity in the left UF were associated with higher temporal impulsivity scores. CONCLUSIONS: The present findings highlight the importance of investigating the spectrum of temporal impulsivity in HD. As, while less prevalent than other psychiatric features, this symptom is still reported to significantly impact the quality of life of patients and caregivers. This study provides evidence that individual differences observed in temporal impulsivity may be explained by variability in limbic frontostriatal tracts, while shedding light on the role of sensitivity to reward in modulating impulsive behavior through the selection of immediate rewards.


Assuntos
Imagem de Tensor de Difusão , Doença de Huntington , Humanos , Doença de Huntington/diagnóstico por imagem , Qualidade de Vida , Comportamento Impulsivo , Individualidade
4.
Parkinsonism Relat Disord ; 105: 83-89, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36395542

RESUMO

INTRODUCTION: Apathy, a prevalent feature in neurological disorders including Huntington's disease (HD), is characterized by a reduction in goal-directed behavior across cognitive, auto-activation (i.e., self-activating thoughts/behavior), and emotional domains. Nonetheless, current diagnostic criteria are incapable of distinguishing multidimensional apathy profiles. Meanwhile, the short-Lille Apathy Rating Scale (LARS-s) bears potential as an operative diagnostic tool to disentangle apathy dimensions in clinical practice. The present study thereby examines the psychometric properties and factor structure of the LARS-s to tap into apathy profiles and their underlying neural correlates in HD. METHODS: Forty HD individuals were scanned and evaluated for apathy using the LARS-s, assessed for reliability and validity in HD, and the short-Problem Behavior Assessment (PBA-s). To study the dimensional structure of apathy, principal component analysis (PCA) of the LARS-s was implemented. Resulting factors were associated with gray matter volume through whole-brain voxel-based morphometry. RESULTS: The LARS-s demonstrated satisfactory psychometric properties, sharing convergent validity with PBA-s apathy and discriminant validity against depression. PCA resulted in three factors representative of apathy profiles across cognitive, auto-activation, and emotional domains. Anatomically, global apathy was significantly related with large-scale motor, cognitive, and limbic networks. Exploratory analyses of apathy profiles revealed correspondence between each factor and distinct cortical and subcortical nodes. CONCLUSION: The LARS-s is capable of capturing the multidimensional spectrum of apathy. At the same time, apathy profiles in HD are underpinned by functionally diverse neural networks. Such findings promote the continued study of apathy domains to pinpoint personalized therapeutic targets in neurologic disorders in addition to HD.


Assuntos
Apatia , Doença de Huntington , Humanos , Doença de Huntington/diagnóstico por imagem , Reprodutibilidade dos Testes , Emoções , Encéfalo
5.
Neuroimage Clin ; 24: 101965, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31401404

RESUMO

BACKGROUND: Apathy is the neuropsychiatric syndrome that correlates most highly with Huntington's disease progression, and, like early patterns of neurodegeneration, is associated with lesions to cortico-striatal connections. However, due to its multidimensional nature and elusive etiology, treatment options are limited. OBJECTIVES: To disentangle underlying white matter microstructural correlates across the apathy spectrum in Huntington's disease. METHODS: Forty-six Huntington's disease individuals (premanifest (N = 22) and manifest (N = 24)) and 35 healthy controls were scanned at 3-tesla and underwent apathy evaluation using the short-Problem Behavior Assessment and short-Lille Apathy Rating Scale, with the latter being characterized into three apathy domains, namely emotional, cognitive, and auto-activation deficit. Diffusion tensor imaging was used to study whether individual differences in specific cortico-striatal tracts predicted global apathy and its subdomains. RESULTS: We elucidate that apathy profiles may develop along differential timelines, with the auto-activation deficit domain manifesting prior to motor onset. Furthermore, diffusion tensor imaging revealed that inter-individual variability in the disruption of discrete cortico-striatal tracts might explain the heterogeneous severity of apathy profiles. Specifically, higher levels of auto-activation deficit symptoms significantly correlated with increased mean diffusivity in the right uncinate fasciculus. Conversely, those with severe cognitive apathy demonstrated increased mean diffusivity in the right frontostriatal tract and left dorsolateral prefrontal cortex to caudate nucleus tract. CONCLUSIONS: The current study provides evidence that white matter correlates associated with emotional, cognitive, and auto-activation subtypes may elucidate the heterogeneous nature of apathy in Huntington's disease, as such opening a door for individualized pharmacological management of apathy as a multidimensional syndrome in other neurodegenerative disorders.


Assuntos
Apatia/fisiologia , Encéfalo/patologia , Doença de Huntington/patologia , Vias Neurais/patologia , Substância Branca/patologia , Adulto , Imagem de Tensor de Difusão , Feminino , Humanos , Doença de Huntington/complicações , Masculino , Pessoa de Meia-Idade
6.
Neuropsychologia ; 122: 116-124, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30563619

RESUMO

A cognitive stimulating lifestyle has been observed to confer cognitive benefits in multiple neurodegenerative diseases. However, the underlying neurobiological basis of this phenomenon remains unclear. Huntington's disease can provide a suitable model to study the effects and neural mechanisms of cognitive engagement in neurodegeneration. In this study, we investigate the effect of lifestyle factors such as education, occupation and engagement in cognitive activities in Huntington's disease gene carriers on cognitive performance and age of onset as well as the underlying neural changes sustaining these effects, measured by magnetic resonance imaging. Specifically, we analyzed both gray matter volume and the strength of connectivity of the executive control resting-state network. High levels of cognitive engagement were significantly associated with more preserved executive functions, a delay in the appearance of symptoms, reduced volume loss of the left precuneus and the bilateral caudate and a modulation of connectivity strength of anterior cingulate cortex and left angular gyrus with the executive control network. These findings suggest that a cognitively stimulating lifestyle may promote brain maintenance by modulating the executive control resting-state network and conferring protection against neurodegeneration, which results in a delayed onset of symptoms and improved performance in executive functions.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Cognição/fisiologia , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/psicologia , Estilo de Vida , Encéfalo/patologia , Mapeamento Encefálico , Reserva Cognitiva , Progressão da Doença , Função Executiva/fisiologia , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Substância Cinzenta/fisiopatologia , Heterozigoto , Humanos , Doença de Huntington/genética , Doença de Huntington/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Neuroproteção , Tamanho do Órgão , Fatores de Proteção , Descanso
7.
Neuroimage Clin ; 23: 101900, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31255947

RESUMO

Huntington's disease (HD) is a genetic neurodegenerative disease which involves a triad of motor, cognitive and psychiatric disturbances. However, there is great variability in the prominence of each type of symptom across individuals. The neurobiological basis of such variability remains poorly understood but would be crucial for better tailored treatments. Multivariate multimodal neuroimaging approaches have been successful in disentangling these profiles in other disorders. Thus we applied for the first time such approach to HD. We studied the relationship between HD symptom domains and multimodal measures sensitive to grey and white matter structural alterations. Forty-three HD gene carriers (23 manifest and 20 premanifest individuals) were scanned and underwent behavioural assessments evaluating motor, cognitive and psychiatric domains. We conducted a multimodal analysis integrating different structural neuroimaging modalities measuring grey matter volume, cortical thickness and white matter diffusion indices - fractional anisotropy and radial diffusivity. All neuroimaging measures were entered into a linked independent component analysis in order to obtain multimodal components reflecting common inter-subject variation across imaging modalities. The relationship between multimodal neuroimaging independent components and behavioural measures was analysed using multiple linear regression. We found that cognitive and motor symptoms shared a common neurobiological basis, whereas the psychiatric domain presented a differentiated neural signature. Behavioural measures of different symptom domains correlated with different neuroimaging components, both the brain regions involved and the neuroimaging modalities most prominently associated with each type of symptom showing differences. More severe cognitive and motor signs together were associated with a multimodal component consisting in a pattern of reduced grey matter, cortical thickness and white matter integrity in cognitive and motor related networks. In contrast, depressive symptoms were associated with a component mainly characterised by reduced cortical thickness pattern in limbic and paralimbic regions. In conclusion, using a multivariate multimodal approach we were able to disentangle the neurobiological substrates of two distinct symptom profiles in HD: one characterised by cognitive and motor features dissociated from a psychiatric profile. These results open a new view on a disease classically considered as a uniform entity and initiates a new avenue for further research considering these qualitative individual differences.


Assuntos
Córtex Cerebral/patologia , Doença de Huntington/patologia , Imageamento por Ressonância Magnética , Neuroimagem , Substância Branca/patologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Imagem de Tensor de Difusão , Feminino , Heterozigoto , Humanos , Doença de Huntington/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Imagem Multimodal , Substância Branca/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA