Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36982541

RESUMO

Multiple evidences suggest that mitochondrial dysfunction is implicated in the pathogenesis of Parkinson's disease via the selective cell death of dopaminergic neurons, such as that which occurs after prolonged exposure to the mitochondrial electron transport chain (ETC) complex I inhibitor, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrine (MPTP). However, the effects of chronic MPTP on the ETC complexes and on enzymes of lipid metabolism have not yet been thoroughly determined. To face these questions, the enzymatic activities of ETC complexes and the lipidomic profile of MPTP-treated non-human primate samples were determined using cell membrane microarrays from different brain areas and tissues. MPTP treatment induced an increase in complex II activity in the olfactory bulb, putamen, caudate, and substantia nigra, where a decrease in complex IV activity was observed. The lipidomic profile was also altered in these areas, with a reduction in the phosphatidylserine (38:1) content being especially relevant. Thus, MPTP treatment not only modulates ETC enzymes, but also seems to alter other mitochondrial enzymes that regulate the lipid metabolism. Moreover, these results show that a combination of cell membrane microarrays, enzymatic assays, and MALDI-MS provides a powerful tool for identifying and validating new therapeutic targets that might accelerate the drug discovery process.


Assuntos
Doença de Parkinson , Animais , Camundongos , Doença de Parkinson/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Haplorrinos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Transporte de Elétrons , Substância Negra/metabolismo , Ensaios Enzimáticos , Lipídeos/farmacologia , Camundongos Endogâmicos C57BL
2.
Eur J Neurosci ; 55(6): 1532-1546, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35266590

RESUMO

Storage of aversive memories is of utmost importance for survival, allowing animals to avoid upcoming similar stimuli. However, without reinforcement, the learned avoidance response gradually decreases over time. Although the molecular mechanisms controlling this extinction process are not well known, there is evidence that the endocannabinoid system plays a key role through CB1 receptor-mediated modulation of cholinergic signaling. In this study, we measured fear extinction throughout 7 months using naïve rats, assessed in passive avoidance (PA) test in a non-reinforced manner. Then, we evaluated the effect of gentle handling and non-aversive novel object recognition test (NORT) on the extinction and expression of fear memories by measuring passive avoidance responses. Neurochemical correlates were analyzed by functional autoradiography for cannabinoid, cholinergic, and dopaminergic receptors. Despite results showing a gradual decrease of passive avoidance response, it did not fully disappear even after 7 months, indicating the robustness of this process. Meanwhile, in rats that received gentle handling or performed NORT after receiving the PA aversive stimulus, extinction occurred within a week. In contrast, gentle handling performed before receiving the aversive stimulus exacerbated fear expression and triggered escape response in PA. The neurochemical analysis showed increased cannabinoid and cholinergic activity in the nucleus basalis magnocellularis (NBM) in rats that had performed only PA, as opposed to rats that received gentle handling before PA. Additionally, a correlation between CB1 mediated-signaling in the NBM and freezing in PA was found, suggesting that the endocannabinoid system might be responsible for modulating fear response induced by aversive memories.


Assuntos
Núcleo Basal de Meynert , Canabinoides , Animais , Aprendizagem da Esquiva/fisiologia , Núcleo Basal de Meynert/metabolismo , Colinérgicos/farmacologia , Endocanabinoides/metabolismo , Extinção Psicológica , Medo/fisiologia , Ratos , Receptor CB1 de Canabinoide/metabolismo
3.
J Neuroinflammation ; 18(1): 73, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731156

RESUMO

BACKGROUND: Astrocytes provide a vital support to neurons in normal and pathological conditions. In Alzheimer's disease (AD) brains, reactive astrocytes have been found surrounding amyloid plaques, forming an astrocytic scar. However, their role and potential mechanisms whereby they affect neuroinflammation, amyloid pathology, and synaptic density in AD remain unclear. METHODS: To explore the role of astrocytes on Aß pathology and neuroinflammatory markers, we pharmacologically ablated them in organotypic brain culture slices (OBCSs) from 5XFAD mouse model of AD and wild-type (WT) littermates with the selective astrocytic toxin L-alpha-aminoadipate (L-AAA). To examine the effects on synaptic circuitry, we measured dendritic spine number and size in OBCSs from Thy-1-GFP transgenic mice incubated with synthetic Aß42 or double transgenics Thy-1-GFP/5XFAD mice treated with LAAA or vehicle for 24 h. RESULTS: Treatment of OBCSs with L-AAA resulted in an increased expression of pro-inflammatory cytokine IL-6 in conditioned media of WTs and 5XFAD slices, associated with changes in microglia morphology but not in density. The profile of inflammatory markers following astrocytic loss was different in WT and transgenic cultures, showing reductions in inflammatory mediators produced in astrocytes only in WT sections. In addition, pharmacological ablation of astrocytes led to an increase in Aß levels in homogenates of OBCS from 5XFAD mice compared with vehicle controls, with reduced enzymatic degradation of Aß due to lower neprilysin and insulin-degrading enzyme (IDE) expression. Furthermore, OBSCs from wild-type mice treated with L-AAA and synthetic amyloid presented 56% higher levels of Aß in culture media compared to sections treated with Aß alone, concomitant with reduced expression of IDE in culture medium, suggesting that astrocytes contribute to Aß clearance and degradation. Quantification of hippocampal dendritic spines revealed a reduction in their density following L-AAA treatment in all groups analyzed. In addition, pharmacological ablation of astrocytes resulted in a decrease in spine size in 5XFAD OBCSs but not in OBCSs from WT treated with synthetic Aß compared to vehicle control. CONCLUSIONS: Astrocytes play a protective role in AD by aiding Aß clearance and supporting synaptic plasticity.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Astrócitos/efeitos dos fármacos , Vias Neurais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Ácido 2-Aminoadípico/farmacologia , Doença de Alzheimer/patologia , Animais , Tamanho Celular/efeitos dos fármacos , Espinhas Dendríticas/efeitos dos fármacos , Encefalite/metabolismo , Encefalite/patologia , Humanos , Interleucina-6/metabolismo , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/metabolismo
4.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830150

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia in aging populations. Recently, the regulation of neurolipid-mediated signaling and cerebral lipid species was shown in AD patients. The triple transgenic mouse model (3xTg-AD), harboring ßAPPSwe, PS1M146V, and tauP301L transgenes, mimics many critical aspects of AD neuropathology and progressively develops neuropathological markers. Thus, in the present study, 3xTg-AD mice have been used to test the involvement of the neurolipid-based signaling by endocannabinoids (eCB), lysophosphatidic acid (LPA), and sphingosine 1-phosphate (S1P) in relation to the lipid deregulation. [35S]GTPγS autoradiography was used in the presence of specific agonists WIN55,212-2, LPA and CYM5442, to measure the activity mediated by CB1, LPA1, and S1P1 Gi/0 coupled receptors, respectively. Consecutive slides were used to analyze the relative intensities of multiple lipid species by MALDI Mass spectrometry imaging (MSI) with microscopic anatomical resolution. The quantitative analysis of the astrocyte population was performed by immunohistochemistry. CB1 receptor activity was decreased in the amygdala and motor cortex of 3xTg-AD mice, but LPA1 activity was increased in the corpus callosum, motor cortex, hippocampal CA1 area, and striatum. Conversely, S1P1 activity was reduced in hippocampal areas. Moreover, the observed modifications on PC, PA, SM, and PI intensities in different brain areas depend on their fatty acid composition, including decrease of polyunsaturated fatty acid (PUFA) phospholipids and increase of species containing saturated fatty acids (SFA). The regulation of some lipid species in specific brain regions together with the modulation of the eCB, LPA, and S1P signaling in 3xTg-AD mice indicate a neuroprotective adaptation to improve neurotransmission, relieve the myelination dysfunction, and to attenuate astrocyte-mediated neuroinflammation. These results could contribute to identify new therapeutic strategies based on the regulation of the lipid signaling in familial AD patients.


Assuntos
Doença de Alzheimer/metabolismo , Modelos Animais de Doenças , Lipídeos/análise , Lisofosfolipídeos/metabolismo , Transdução de Sinais , Esfingosina/análogos & derivados , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Ácidos Graxos Insaturados/metabolismo , Hipocampo/metabolismo , Humanos , Masculino , Camundongos Transgênicos , Fosfolipídeos/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Esfingosina/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
5.
Anal Chem ; 91(24): 15967-15973, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31751120

RESUMO

The recent developments in mass spectrometry have revealed the importance of lipids as biomarkers in the context of different diseases and as indicators of the cell's homeostasis. However, further advances are required to unveil the complex relationships between lipid classes and lipid species with proteins. Here, we present a new methodology that combines microarrays with mass spectrometry to obtain the lipid fingerprint of samples of a different nature in a standardized and fast way, with minimal sample consumption. As a proof of concept, we use the methodology to obtain the lipid fingerprint of 20 rat tissues and to create a lipid library for tissue classification. Then, we combine those results with immunohistochemistry and enzymatic assays to unveil the relationship between some lipid species and two enzymes. Finally, we demonstrate the performance of the methodology to explore changes in lipid composition of the nucleus accumbens from mice subjected to two lipid diets.


Assuntos
Encéfalo/metabolismo , Lipídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Linhagem Celular , Dieta/veterinária , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise em Microsséries , Núcleo Accumbens/metabolismo , Ratos , Ratos Sprague-Dawley
6.
Glia ; 63(1): 163-76, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25130621

RESUMO

The endocannabinoids 2-araquidonoylglycerol (2-AG) and anandamide (AEA) are bioactive lipids crucially involved in the regulation of brain function in basal and pathological conditions. Blockade of endocannabinoid metabolism has emerged as a promising therapeutic strategy for inflammatory diseases of the central nervous system, including myelin disorders such as multiple sclerosis. Nevertheless, the biological actions of endocannabinoid degradation inhibitors in oligodendrocytes and white matter tracts are still ill defined. Here we show that the selective monoacylglycerol lipase (MAGL) inhibitor JZL184 suppressed cell death by mild activation of AMPA receptors in oligodendrocytes in vitro, an effect that was mimicked by MAGL substrate 2-AG and by the second major endocannabinoid AEA, in a concentration-dependent manner, whereas inhibition of the AEA metabolizing enzyme fatty acid amide hydrolase with URB597 was devoid of effect. Pharmacological experiments suggested that oligodendrocyte protection from excitotoxicity resulting from MAGL blockade involved the activation of cannabinoid CB1 receptors and the reduction of AMPA-induced cytosolic calcium overload, mitochondrial membrane depolarization, and production of reactive oxygen species. Administration of JZL184 under a therapeutic regimen decreased clinical severity, prevented demyelination, and reduced inflammation in chronic experimental autoimmune encephalomyelitis. Furthermore, MAGL inactivation robustly preserved myelin integrity and suppressed microglial activation in the cuprizone-induced model of T-cell-independent demyelination. These findings suggest that MAGL blockade may be a useful strategy for the treatment of immune-dependent and -independent damage to the white matter.


Assuntos
Benzodioxóis/farmacologia , Doenças Desmielinizantes/prevenção & controle , Monoacilglicerol Lipases/antagonistas & inibidores , Oligodendroglia/metabolismo , Piperidinas/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Amidoidrolases/metabolismo , Animais , Benzamidas , Moduladores de Receptores de Canabinoides/metabolismo , Carbamatos , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Ratos Sprague-Dawley
7.
J Neurochem ; 134(3): 471-85, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25857358

RESUMO

Lysophosphatidic acid (LPA) is a signaling molecule that binds to six known G protein-coupled receptors: LPA1 -LPA6 . LPA evokes several responses in the CNS, including cortical development and folding, growth of the axonal cone and its retraction process. Those cell processes involve survival, migration, adhesion proliferation, differentiation, and myelination. The anatomical localization of LPA1 is incompletely understood, particularly with regard to LPA binding. Therefore, we have used functional [(35) S]GTPγS autoradiography to verify the anatomical distribution of LPA1 binding sites in adult rodent and human brain. The greatest activity was observed in myelinated areas of the white matter such as corpus callosum, internal capsule and cerebellum. MaLPA1 -null mice (a variant of LPA1 -null) lack [(35) S]GTPγS basal binding in white matter areas, where the LPA1 receptor is expressed at high levels, suggesting a relevant role of the activity of this receptor in the most myelinated brain areas. In addition, phospholipid precursors of LPA were localized by MALDI-IMS in both rodent and human brain slices identifying numerous species of phosphatides and phosphatidylcholines. Both phosphatides and phosphatidylcholines species represent potential LPA precursors. The anatomical distribution of these precursors in rodent and human brain may indicate a metabolic relationship between LPA and LPA1 receptors. Lysophosphatidic acid (LPA) is a signaling molecule that binds to six known G protein-coupled receptors (GPCR), LPA1 to LPA6 . LPA evokes several responses in the central nervous system (CNS), including cortical development and folding, growth of the axonal cone and its retraction process. We used functional [(35) S]GTPγS autoradiography to verify the anatomical distribution of LPA1 -binding sites in adult rodent and human brain. The distribution of LPA1 receptors in rat, mouse and human brains show the highest activity in white matter myelinated areas. The basal and LPA-evoked activities are abolished in MaLPA1 -null mice. The phospholipid precursors of LPA are localized by MALDI-IMS. The anatomical distribution of LPA precursors in rodent and human brain suggests a relationship with functional LPA1 receptors.


Assuntos
Química Encefálica/fisiologia , Encéfalo/metabolismo , Lisofosfolipídeos/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Animais , Autorradiografia , Humanos , Masculino , Camundongos , Camundongos Knockout , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
9.
J Alzheimers Dis ; 98(4): 1515-1532, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578893

RESUMO

Background: Although sporadic Alzheimer's disease (AD) is a neurodegenerative disorder of unknown etiology, familial AD is associated with specific gene mutations. A commonality between these forms of AD is that both display multiple pathogenic events including cholinergic and lipid dysregulation. Objective: We aimed to identify the relevant lipids and the activity of their related receptors in the frontal cortex and correlating them with cognition during the progression of AD. Methods: MALDI-mass spectrometry imaging (MSI) and functional autoradiography was used to evaluate the distribution of phospholipids/sphingolipids and the activity of cannabinoid 1 (CB1), sphingosine 1-phosphate 1 (S1P1), and muscarinic M2/M4 receptors in the frontal cortex (FC) of people that come to autopsy with premortem clinical diagnosis of AD, mild cognitive impairment (MCI), and no cognitive impairment (NCI). Results: MALDI-MSI revealed an increase in myelin-related lipids, such as diacylglycerol (DG) 36:1, DG 38:5, and phosphatidic acid (PA) 40:6 in the white matter (WM) in MCI compared to NCI, and a downregulation of WM phosphatidylinositol (PI) 38:4 and PI 38:5 levels in AD compared to NCI. Elevated levels of phosphatidylcholine (PC) 32:1, PC 34:0, and sphingomyelin 38:1 were observed in discrete lipid accumulations in the FC supragranular layers during disease progression. Muscarinic M2/M4 receptor activation in layers V-VI decreased in AD compared to MCI. CB1 receptor activity was upregulated in layers V-VI, while S1P1 was downregulated within WM in AD relative to NCI. Conclusions: FC WM lipidomic alterations are associated with myelin dyshomeostasis in prodromal AD, suggesting WM lipid maintenance as a potential therapeutic target for dementia.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Disfunção Cognitiva/patologia , Receptor Muscarínico M4 , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/patologia , Colinérgicos , Lipídeos
10.
Vaccine ; 42(18): 3916-3929, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38782665

RESUMO

Nonenveloped virus-like particles (VLPs) are self-assembled oligomeric structures composed of one or more proteins that originate from diverse viruses. Because these VLPs have similar antigenicity to the parental virus, they are successfully used as vaccines against cognate virus infection. Furthermore, after foreign antigenic sequences are inserted in their protein components (chimVLPs), some VLPs are also amenable to producing vaccines against pathogens other than the virus it originates from (these VLPs are named platform or epitope carrier). Designing chimVLP vaccines is challenging because the immunogenic response must be oriented against a given antigen without altering stimulant properties inherent to the VLP. An important step in this process is choosing the location of the sequence modifications because this must be performed without compromising the assembly and stability of the original VLP. Currently, many immunogenic data and computational tools can help guide the design of chimVLPs, thus reducing experimental costs and work. In this study, we analyze the structure of a novel VLP that originate from an insect virus and describe the putative regions of its three structural proteins amenable to insertion. For this purpose, we employed molecular dynamics (MD) simulations to assess chimVLP stability by comparing mutated and wild-type (WT) VLP protein trajectories. We applied this procedure to design a chimVLP that can serve as a prophylactic vaccine against the SARS-CoV-2 virus. The methodology described in this work is generally applicable for VLP-based vaccine development.


Assuntos
Epitopos , Vacinas de Partículas Semelhantes a Vírus , Vacinas de Partículas Semelhantes a Vírus/imunologia , Epitopos/imunologia , Epitopos/genética , Humanos , SARS-CoV-2/imunologia , Simulação de Dinâmica Molecular , COVID-19/prevenção & controle , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Biologia Computacional/métodos
11.
Methods Mol Biol ; 2561: 245-259, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36399274

RESUMO

Recent technical advances in mass spectrometry, as applied to the analytical chemistry of lipid molecules, enable the simultaneous detection of the multiplicity of lipid complex species present in the human brain. This, in combination with quantitative studies carried out in plasma samples, helps to identify disease biomarkers including for Alzheimer's disease (AD). Mass spectrometry imaging (MSI) is particularly powerful for the anatomical localization of lipids in brain slices, identifying lipid modifications in postmortem frozen samples from AD patients.Human brain tissues are sectioned in a cryostat and then covered with a chemical matrix, such as mercaptobenzothiazole (MBT) or α-cyano-4-hydroxycinnamic acid (CHCA), to ionize the lipid molecules either by sublimation or by spraying. We describe the use of matrix-assisted laser desorption ionization (MALDI) in an LTQ-Orbitrap-XL mass spectrometer to scan brain tissue slices with high spatial resolution, analyzing 50 µm cell layers. The lipid spectra obtained for each pixel are transformed to color-coded intensity maps of hundreds of lipid species included those within a single tissue slice.


Assuntos
Doença de Alzheimer , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Química Encefálica , Encéfalo , Lipídeos/análise
12.
ACS Pharmacol Transl Sci ; 5(9): 791-802, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36110372

RESUMO

The endocannabinoid system modulates learning, memory, and neuroinflammatory processes, playing a key role in neurodegeneration, including Alzheimer's disease (AD). Previous results in a rat lesion model of AD showed modulation of endocannabinoid receptor activity in the basalo-cortical pathway following a specific lesion of basal forebrain cholinergic neurons (BFCNs), indicating that the glial neuroinflammatory response accompanying the lesion is related to endocannabinoid signaling. In this study, 7 days after the lesion, decreased astrocyte and increased microglia immunoreactivities (GFAP and Iba-1) were observed, indicating microglia-mediated neuroinflammation. Using autoradiographic studies, the density and functional coupling to G-proteins of endocannabinoid receptor subtypes were studied in tissue sections from different brain areas where microglia density increased, using CB1 and CB2 selective agonists and antagonists. In the presence of the specific CB1 receptor antagonist, SR141716A, [3H]CP55,940 binding (receptor density) was completely blocked in a dose-dependent manner, while the selective CB2 receptor antagonist, SR144528, inhibited binding to 25%, at best. [35S]GTPγS autoradiography (receptor coupling to Gi/0-proteins) evoked by CP55,940 (CB1/CB2 agonist) and HU308 (more selective for CB2) was abolished by SR141716A in all areas, while SR144528 blocked up to 51.8% of the coupling to Gi/0-proteins evoked by CP55,940 restricted to the nucleus basalis magnocellularis. Together, these results demonstrate that there are increased microglia and decreased astrocyte immunoreactivities 1 week after a specific deletion of BFCNs, which projects to cortical areas, where the CB1 receptor coupling to Gi/0-proteins is upregulated. However, at the lesion site, the area with the highest neuroinflammatory response, there is also a limited contribution of CB2.

13.
Elife ; 112022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36217821

RESUMO

Williams-Beuren syndrome (WBS) is a rare genetic multisystemic disorder characterized by mild-to-moderate intellectual disability and hypersocial phenotype, while the most life-threatening features are cardiovascular abnormalities. Nowadays, there are no pharmacological treatments to directly ameliorate the main traits of WBS. The endocannabinoid system (ECS), given its relevance for both cognitive and cardiovascular function, could be a potential druggable target in this syndrome. We analyzed the components of the ECS in the complete deletion (CD) mouse model of WBS and assessed the impact of its pharmacological modulation in key phenotypes relevant for WBS. CD mice showed the characteristic hypersociable phenotype with no preference for social novelty and poor short-term object-recognition performance. Brain cannabinoid type-1 receptor (CB1R) in CD male mice showed alterations in density and coupling with no detectable change in main endocannabinoids. Endocannabinoid signaling modulation with subchronic (10 days) JZL184, a selective inhibitor of monoacylglycerol lipase, specifically normalized the social and cognitive phenotype of CD mice. Notably, JZL184 treatment improved cardiovascular function and restored gene expression patterns in cardiac tissue. These results reveal the modulation of the ECS as a promising novel therapeutic approach to improve key phenotypic alterations in WBS.


Williams-Beuren syndrome (WBS) is a rare disorder that causes hyper-social behavior, intellectual disability, memory problems, and life-threatening overgrowth of the heart. Behavioral therapies can help improve the cognitive and social aspects of the syndrome and surgery is sometimes used to treat the effects on the heart, although often with limited success. However, there are currently no medications available to treat WBS. The endocannabinoid system ­ which consists of cannabis-like chemical messengers that bind to specific cannabinoid receptor proteins ­ has been shown to influence cognitive and social behaviors, as well as certain functions of the heart. This has led scientists to suspect that the endocannabinoid system may play a role in WBS, and drugs modifying this network of chemical messengers could help treat the rare condition. To investigate, Navarro-Romero, Galera-López et al. studied mice which had the same genetic deletion found in patients with WBS. Similar to humans, the male mice displayed hyper-social behaviors, had memory deficits and enlarged hearts. Navarro-Romero, Galera-López et al. found that these mutant mice also had differences in the function of the receptor protein cannabinoid type-1 (CB1). The genetically modified mice were then treated with an experimental drug called JZL184 that blocks the breakdown of endocannabinoids which bind to the CB1 receptor. This normalized the number and function of receptors in the brains of the WBS mice, and reduced their social and memory symptoms. The treatment also restored the animals' heart cells to a more normal size, improved the function of their heart tissue, and led to lower blood pressure. Further experiments revealed that the drug caused the mutant mice to activate many genes in their heart muscle cells to the same level as normal, healthy mice. These findings suggest that JZL184 or other drugs targeting the endocannabinoid system may help ease the symptoms associated with WBS. More studies are needed to test the drug's effectiveness in humans with this syndrome. Furthermore, the dramatic effect JZL184 has on the heart suggests that it might also help treat high blood pressure or conditions that cause the overgrowth of heart cells.


Assuntos
Canabinoides , Síndrome de Williams , Animais , Benzodioxóis , Modelos Animais de Doenças , Endocanabinoides/metabolismo , Masculino , Camundongos , Monoacilglicerol Lipases/genética , Fenótipo , Piperidinas , Síndrome de Williams/genética
14.
Anal Bioanal Chem ; 401(1): 89-101, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21437774

RESUMO

The enormous abundance of lipid molecules in the central nervous system (CNS) suggests that their role is not limited to be structural and energetic components of cells. Over the last decades, some lipids in the CNS have been identified as intracellular signalers, while others are known to act as neuromodulators of neurotransmission through binding to specific receptors. Neurotransmitters of lipidic nature, currently known as neurolipids, are synthesized during the metabolism of phospholipid precursors present in cell membranes. Therefore, the anatomical identification of each of the different lipid species in human CNS by imaging mass spectrometry (IMS), in association with other biochemical techniques with spatial resolution, can increase our knowledge on the precise metabolic routes that synthesize these neurolipids and their localization. The present study shows the lipid distribution obtained by MALDI-TOF IMS in human frontal cortex, hippocampus, and striatal area, together with functional autoradiography of cannabinoid and LPA receptors. The combined application of these methods to postmortem human brain samples may be envisioned as critical to further understand neurological diseases, in general, and particularly, the neurodegeneration that accompanies Alzheimer's disease.


Assuntos
Química Encefálica , Encéfalo/ultraestrutura , Lipídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Autorradiografia , Encéfalo/diagnóstico por imagem , Corpo Estriado/química , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/ultraestrutura , Lobo Frontal/química , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/ultraestrutura , Hipocampo/química , Hipocampo/diagnóstico por imagem , Hipocampo/ultraestrutura , Humanos , Radiografia , Receptores de Canabinoides/análise , Receptores de Ácidos Lisofosfatídicos/análise
15.
ACS Chem Neurosci ; 12(12): 2167-2181, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34037379

RESUMO

Alzheimer's disease (AD) represents the most common cause of dementia worldwide and has been consistently associated with the loss of basal forebrain cholinergic neurons (BFCNs) leading to impaired cholinergic neurotransmission, aberrant synaptic function, and altered structural lipid metabolism. In this sense, membrane phospholipids (PLs) can be used for de novo synthesis of choline (Ch) for the further obtaining of acetylcholine (ACh) when its availability is compromised. Specific lipid species involved in the metabolism of Ch have been identified as possible biomarkers of phenoconversion to AD. Using a rat model of BFCN lesion, we have evaluated the lipid composition and muscarinic signaling in brain areas related to cognitive processes. The loss of BFCN resulted in alterations of varied lipid species related to Ch metabolism at nucleus basalis magnocellularis (NMB) and cortical projection areas. The activity of muscarinic receptors (mAChR) was decreased in the NMB and increased in the hippocampus according to the subcellular distribution of M1/M2 mAChR which could explain the learning and memory impairment reported in this AD rat model. These results suggest that the modulation of specific lipid metabolic routes could represent an alternative therapeutic strategy to potentiate cholinergic neurotransmission and preserve cell membrane integrity in AD.


Assuntos
Doença de Alzheimer , Acetilcolina , Animais , Colinérgicos/farmacologia , Fosfolipídeos , Prosencéfalo , Ratos
16.
Artigo em Inglês | MEDLINE | ID: mdl-33152386

RESUMO

Several studies have demonstrated that lysophosphatidic acid (LPA) acts through its LPA receptors in multiple biological and behavioral processes, including adult hippocampal neurogenesis, hippocampal-dependent memory, and emotional regulation. However, analyses of the effects have typically involved acute treatments, and there is no information available regarding the effect of the chronic pharmacological modulation of the LPA/LPA receptors-signaling pathway. Thus, we analyzed the effect of the chronic (21 days) and continuous intracerebroventricular (ICV) infusion of C18:1 LPA and the LPA1-3 receptor antagonist Ki16425 in behavior and adult hippocampal neurogenesis. Twenty-one days after continuous ICV infusions, mouse behaviors in the open field test, Y-maze test and forced swimming test were assessed. In addition, the hippocampus was examined for c-Fos expression and α-CaMKII and phospho-α-CaMKII levels. The current study demonstrates that chronic C18:1 LPA produced antidepressant effects, improved spatial working memory, and enhanced adult hippocampal neurogenesis. In contrast, chronic LPA1-3 receptor antagonism disrupted exploratory activity and spatial working memory, induced anxiety and depression-like behaviors and produced an impairment of hippocampal neurogenesis. While these effects were accompanied by an increase in neuronal activation in the DG of C18:1 LPA-treated mice, Ki16425-treated mice showed reduced neuronal activation in CA3 and CA1 hippocampal subfields. Treatment with the antagonist also induced an imbalance in the expression of basal/activated α-CaMKII protein forms. These outcomes indicate that the chronic central modulation of the LPA receptors-signaling pathway in the brain regulates cognition and emotion, likely comprising hippocampal-dependent mechanisms. The use of pharmacological modulation of this pathway in the brain may potentially be targeted for the treatment of several neuropsychiatric conditions.


Assuntos
Cognição/fisiologia , Emoções/fisiologia , Hipocampo/metabolismo , Lisofosfolipídeos/administração & dosagem , Neurogênese/fisiologia , Receptores de Ácidos Lisofosfatídicos/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cognição/efeitos dos fármacos , Emoções/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Infusões Intraventriculares , Isoxazóis/administração & dosagem , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Neurogênese/efeitos dos fármacos , Propionatos/administração & dosagem , Receptores de Ácidos Lisofosfatídicos/agonistas , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
17.
Synapse ; 64(9): 682-98, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20336631

RESUMO

High levels of anandamide are located in the basal ganglia. The subthalamic nucleus (STN) is considered to be an important modulator of basal ganglia output. The present study aims at characterizing the modulation of the electrical activity of STN neurons by exogenous anandamide or endocannabinoids. Single-unit extracellular recordings in anesthetized rats and patch-clamp techniques in rat brain slices containing the STN were performed. Immunohistochemical assays were used. In vivo, anandamide administration produced two opposite effects (inhibition or stimulation) on STN neuron firing rates, depending of the precise location of the neuron within the nucleus. These effects were enhanced by prior inhibition of fatty acid amide hydrolase with URB597, but not by the inhibitor of carrier-mediated anandamide transport AM404. Rimonabant, a specific CB(1) receptor antagonist, also produced inhibition or stimulation of STN neuron activity when administered alone or after anandamide. These effects seem to be mediated by indirect mechanisms since: (1) STN neuron activity is not modified by the cannabinoid agonist Delta(9)-tetrahydrocannabinol (Delta(9)-THC) in vitro; (2) no depolarization-induced suppression of inhibition phenomena were observed; and (3) CB(1) receptor immunolabeling was not detected in the STN, but was abundant in areas which project efferents to this nucleus. Moreover, chemical lesion of the globus pallidus abolished the stimulatory effect of anandamide and microinfusion of anandamide into the prefrontal cortex led to inhibition of STN neuron activity. The present results show that endocannabinoids exert a tonic control on STN activity via receptors located outside the nucleus. These findings may contribute to enhance our understanding of the role of the endocannabinoid system in motor control.


Assuntos
Ácidos Araquidônicos/farmacologia , Moduladores de Receptores de Canabinoides/farmacologia , Endocanabinoides , Neurônios/efeitos dos fármacos , Alcamidas Poli-Insaturadas/farmacologia , Núcleo Subtalâmico/citologia , Núcleo Subtalâmico/efeitos dos fármacos , Animais , Ácidos Araquidônicos/metabolismo , Benzamidas/farmacologia , Moduladores de Receptores de Canabinoides/metabolismo , Carbamatos/farmacologia , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Relação Dose-Resposta a Droga , Dronabinol/farmacologia , Eletrofisiologia , Globo Pálido/citologia , Globo Pálido/efeitos dos fármacos , Imuno-Histoquímica , Injeções Intraventriculares , Masculino , Microinjeções , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/metabolismo , Córtex Pré-Frontal/fisiologia , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley , Rimonabanto
18.
Front Cell Neurosci ; 14: 214, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765223

RESUMO

In the central nervous system, the inhibitory GABAB receptor is the archetype of heterodimeric G protein-coupled receptors (GPCRs). Receptor interaction with partner proteins has emerged as a novel mechanism to alter GPCR signaling in pathophysiological conditions. We propose here that GABAB activity is inhibited through the specific binding of fibulin-2, an extracellular matrix protein, to the B1a subunit in a rat model of neuropathic pain. We demonstrate that fibulin-2 hampers GABAB activation, presumably through decreasing agonist-induced conformational changes. Fibulin-2 regulates the GABAB-mediated presynaptic inhibition of neurotransmitter release and weakens the GABAB-mediated inhibitory effect in neuronal cell culture. In the dorsal spinal cord of neuropathic rats, fibulin-2 is overexpressed and colocalized with B1a. Fibulin-2 may thus interact with presynaptic GABAB receptors, including those on nociceptive afferents. By applying anti-fibulin-2 siRNA in vivo, we enhanced the antinociceptive effect of intrathecal baclofen in neuropathic rats, thus demonstrating that fibulin-2 limits the action of GABAB agonists in vivo. Taken together, our data provide an example of an endogenous regulation of GABAB receptor by extracellular matrix proteins and demonstrate its functional impact on pathophysiological processes of pain sensitization.

19.
Artigo em Inglês | MEDLINE | ID: mdl-39034736

RESUMO

Neurolipids comprise a diverse class of bioactive lipids that include molecules capable of activating G protein­coupled receptors, thereby inducing systemic effects that contribute to the maintenance of homeostasis. Dementia, a non­specific brain disorder characterized by a common set of signs and symptoms, usually arises subsequent to brain injuries or diseases and is often associated with the aging process. Individuals affected by dementia suffer from the disruption of several neurotransmitter and neuromodulatory systems, among which neurolipids play an important role, including the endocannabinoid, lysophosphatidic acid and sphingosine 1­phosphate systems. In this review, we present an overview of the most recent and pertinent findings regarding the involvement of these neurolipidic systems in dementia, including data from a wide range of both in vitro and in vivo experiments as well as clinical trials.

20.
Front Mol Neurosci ; 12: 223, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31607860

RESUMO

Neurolipids are a class of bioactive lipids that are produced locally through specific biosynthetic pathways in response to extracellular stimuli. Neurolipids are important endogenous regulators of neural cell proliferation, differentiation, oxidative stress, inflammation and apoptosis. Endocannabinoids (eCBs) and lysophosphatidic acid (LPA) are examples of this type of molecule and are involved in neuroprotection. The present study analyzes a possible relationship of the main receptor subtypes for both neurolipid systems that are present in the central nervous system, the CB1 and LPA1 receptors, by using brain slices from CB1 KO mice and LPA1-null mice. Receptor-mediated G protein activation and glycerophospholipid regulation of potential precursors of their endogenous neurotransmitters were measured by two different in vitro imaging techniques, functional autoradiography and imaging mass spectrometry (IMS), respectively. Possible crosstalk between CB1 and LPA1 receptors was identified in specific areas of the brain, such as the amygdala, where LPA1 receptor activity is upregulated in CB1 KO mice. More evidence of an interaction between both systems was that the CB1-mediated activity was clearly increased in the prefrontal cortex and cerebellum of LPA1-null mice. The eCB system was specifically over-activated in regions where LPA1 has an important signaling role during embryonic development. The modifications on phospholipids (PLs) observed in these genetically modified mice by using the IMS technique indicated the regulation of some of the PL precursors of both LPA and eCBs in specific brain areas. For example, phosphatidylcholine (PC) (36:1) was detected as a potential LPA precursor, and phosphatidylethanolamine (PE) (40:6) and PE (p18:0/22:6) as potential eCB precursors. The absence of the main cerebral receptors for LPA or eCB systems is able to induce modulation on the other at the levels of both signaling and synthesis of endogenous neurotransmitters, indicating adaptive responses between both systems during prenatal and/or postnatal development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA