Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Environ Manage ; 196: 651-658, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28365550

RESUMO

The aims of the present study are to assess the organic waste vermicomposting process (cattle manure mixed with tannery sludge) by using inorganic waste (rock dust) inoculated with treated domestic wastewater sewage, as well as the vermicompost application in Ruellia brittoniana seedling production. Different proportions of organic and inorganic waste moistened (or not) in wastewater were vermicomposted (by Eisenia foetida) for 120 days in the first stage of the experiment. Statistically significant earthworm density increase was observed between the 60th and 90th experimental vermicompositing days in all the assessed groups. There was decreased E. foetida population density after 90 days. The K, P, TOC, C/N ratio and Ca, Na and Mg concentrations significantly decreased at the end of the vermicompositing process in comparison to the initial concentrations identified in most treatments. On the other hand, there was pH and N, Fe, Zn and Mn concentration increase in most of the vermicomposts assessed at the end of the experiment. All plants grown in soil containing vermicomposts presented higher Dickson Quality Index (DQI) than the control group, which was cultivated in soil containing commercial topsoil. Plants grown in soil containing 100% cattle manure and tannery sludge, moistened in treated domestic wastewater sewage, showed the highest DQI. Thus, the vermicomposting waste used in the present study, which was inoculated with treated domestic wastewater sewage, is an interesting vermicompost production technology to be used in ornamental plant production.


Assuntos
Esgotos , Águas Residuárias , Animais , Bovinos , Poeira , Esterco , Oligoquetos , Solo
2.
Environ Pollut ; 343: 123236, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38160776

RESUMO

The increasing use of cellulose-based materials (CBMs) has provided beneficial applications in different sectors. However, its release into environments may represent an ecological risk, therefore demanding that ecotoxicological studies be conducted to understand the risks (current and future) of CBM pollution. Thus, we evaluated the possible effects of microcrystalline cellulose (CMs) in Physalaemus cuvieri tadpoles. After seven days of exposure to CMs (at 58.29 and 100 mg/L), the animals were subjected to behavioral evaluation, and different biomarkers (biometric and biochemical) were evaluated. Although our data do not point to a neurotoxic effect of CMs (inferred by the absence of behavioral changes and changes in AChE and BChE activity), animals exposed to CMs showed differences in body condition. Furthermore, we noticed an increase in the frequency of erythrocyte nuclear abnormalities and DNA damage, which were correlated with the ingestion of CMs. We noticed that the antioxidant activity of tadpoles exposed to CMs (inferred by SOD, CAT, and DPPH radical scavenging activity) was insufficient to control the increase in ROS and MDA production. Furthermore, exposure to CMs induced a predominant Th2-specific immune response, marked by suppressed IFN-γ and increased IL-10 levels, with a consequent reduction in NO levels. Principal component analysis and IBRv-2 indicate, in general, a primarily more toxic response to animals exposed to the highest CM concentration. Therefore, our study evidence that CMs affect the health of P. cuvieri tadpoles and sheds light on the threat these materials pose to amphibians.


Assuntos
Anuros , Poluentes Químicos da Água , Animais , Larva , Anuros/fisiologia , Antioxidantes/farmacologia , Poluentes Químicos da Água/toxicidade
3.
Sci Total Environ ; 878: 163153, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37003323

RESUMO

Although carbon-based nanomaterials (CNMs) toxicity has already been demonstrated in some animal models, little is known about the impact of carbon nanofibers (CNFs) on aquatic vertebrates. Thus, we aimed to evaluate the possible effects of long-term exposure of zebrafish (Danio rerio) juveniles (90 days) to CNFs in predicted environmentally relevant concentrations (10 ng/L and 10 µg/L). Our data revealed that exposure to CNFs did not affect the growth and development of the animals, in addition to not having induced locomotor alterations or anxiety-like behavior. On the other hand, we observed that zebrafish exposed to CNFs showed a response deficit to the vibratory stimulus test, alteration in the density of neuromasts recorded in the final ventral region, as well as an increase in thiobarbituric acid reactive substances levels and a reduction in total antioxidant activity, nitric oxide, and acetylcholinesterase activity in the brain. Such data were directly associated with a higher concentration of total organic carbon in the brain, which suggests the bioaccumulation of CNFs. Furthermore, exposure to CNFs induced a picture suggestive of genomic instability, inferred by the increased frequency of nuclear abnormalities and DNA damage in circulating erythrocytes. Although the individual analyses of the biomarkers did not point to a concentration-dependent effect, the principal component analysis (PCA) and the Integrated Biomarker Response Index (IBRv2) indicate a more prominent effect induced by the higher CNFs concentration (10 µg/L). Therefore, our study confirms the impact of CNFs in the studied model (D. rerio) and sheds light on the ecotoxicological risks of these nanomaterials to freshwater fish. Based on the ecotoxicological screening provided by our study, new horizons are opened for investigations into the mechanisms of action of CNFs, which will help understand the magnitude of the impact of these materials on aquatic biota.


Assuntos
Nanofibras , Poluentes Químicos da Água , Animais , Peixe-Zebra , Carbono , Acetilcolinesterase , Ecotoxicologia , Poluentes Químicos da Água/toxicidade
4.
J Hazard Mater ; 442: 130004, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36152541

RESUMO

Although the in vivo toxicity of nanoplastics (NPs) has already been reported in different model systems, their effects on mammalian behavior are poorly understood. Thus, we aimed to evaluate whether exposure to polystyrene (PS) NPs (diameter: 23.03 ± 0.266 nm) alters the behavior (locomotor, anxiety-like and antipredator) of male Swiss mice, induces brain antioxidant activity, and erythrocyte DNA damage. For this, the animals were exposed to NPs for 20 days at different doses (6.5 ng/kg and 6500 ng/kg). Initially, we did not observe any effect of pollutants on the locomotor activity of the animals (inferred via open field test and Basso mouse scale for locomotion). However, we noticed an anxiolytic-like behavior (in the open field test) and alterations in the antipredatory defensive response of mice exposed to PS NPs, when confronted with their predator potential (snake, Pantherophis guttatus). Furthermore, such changes were associated with suppressing brain antioxidant activity, inferred by lower DPPH radical scavenging activity, reduced total glutathione content, as well as the translocation and accumulation of NPs in the brain of the animals. In addition, we noted that the treatments induced DNA damage, evaluated via a single-cell gel electrophoresis assay (comet assay) applied to circulating erythrocytes of the animals. However, we did not observe a dose-response effect for all biomarkers evaluated and the estimated accumulation of PS NPs in the brain. The values of the integrated biomarker response index and the results of the principal component analysis (PCA) and the hierarchical clustering analysis confirmed the similarity between the responses of animals exposed to different doses of PS NPs. Therefore, our study sheds light on how PS NPs can impact mammals and reinforce the ecotoxicological risk associated with the dispersion of these pollutants in natural environments and their uptake by mammals.


Assuntos
Ansiolíticos , Poluentes Ambientais , Nanopartículas , Poluentes Químicos da Água , Masculino , Animais , Camundongos , Poliestirenos/toxicidade , Poliestirenos/química , Microplásticos , Antioxidantes , Poluentes Químicos da Água/química , Nanopartículas/química , Dano ao DNA , Glutationa , Mamíferos
5.
Sci Total Environ ; 873: 162382, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36828072

RESUMO

Although the ecotoxicological effects of ZnO nanoparticles (ZnO NPs) have already been reported in different taxa, little is known about their impacts on amphibians. Thus, we aimed to evaluate the potential effects of exposure of Physalaemus cuvieri tadpoles to substrates enriched with ZnO NPs (and with its ionic counterpart, Zn+2, ZnCl2 - both at 100 mg/kg) previously used in the cultivation of Panicum maximum (Guinea grass). We showed that although exposure for 21 days did not impact the survival, growth, and development of tadpoles, we noted an increase in the frequency of erythrocyte nuclear abnormalities in the "ZnCl2" and "ZnONP" groups, which was associated with suppression of antioxidant activity in the animals (inferred by SOD and CAT activity and DPPH free radical scavenging capacity). In the tadpoles of the "ZnONP" group, we also noticed a reduction in creatinine and bilirubin levels, alpha-amylase activity, and an increase in alkaline phosphatase activity. But the treatments did not alter the activity of the enzymes lactate dehydrogenase and gamma-glutamyl-transferase and total protein and carbohydrate levels. On the other hand, we report a cholinesterase and hypotriglyceridemic effect in the "ZnCl2" and "ZnONP" groups. Zn bioaccumulation in animals, from ZnO NPs, from Zn+2 released from them, or both, has been associated with causing these changes. Finally, principal component analysis (PCA) and the values of the "Integrated Biomarker Response" index revealed that the exposure of animals to substrates enriched with ZnO NPs caused more pronounced effects than those attributed to its ionic counterpart. Therefore, our study reinforces the need to consider the environmental risks of using these nanomaterials for agricultural purposes for amphibians.


Assuntos
Anuros , Nanopartículas , Óxido de Zinco , Animais , Agricultura , Antioxidantes/metabolismo , Anuros/fisiologia , Larva/metabolismo , Nanopartículas/toxicidade , Óxido de Zinco/toxicidade , Óxido de Zinco/metabolismo
6.
Sci Total Environ ; 882: 163617, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37088384

RESUMO

The COVID-19 pandemic has caused unprecedented negative impacts in the modern era, including economic, social, and public health losses. On the other hand, the potential effects that the input of SARS-CoV-2 in the aquatic environment from sewage may represent on non-target organisms are not well known. In addition, it is not yet known whether the association of SARS-CoV-2 with other pollutants, such as microplastics (MPs), may further impact the aquatic biota. Thus, we aimed to evaluate the possible ecotoxicological effects of exposure of male adults Poecilia reticulata, for 15 days, to inactivated SARS-CoV-2 (0.742 pg/L; isolated SARS.CoV2/SP02.2020.HIAE.Br) and polyethylene MP (PE MPs) (7.1 × 104 particles/L), alone and in combination, from multiple biomarkers. Our data suggest that exposure to SARS-CoV-2 induced behavioral changes (in the open field test), nephrotoxic effect (inferred by the increase in creatinine), hepatotoxic effect (inferred by the increase in bilirubin production), imbalance in the homeostasis of Fe, Ca, and Mg, as well as an anticholinesterase effect in the animals [marked by the reduction of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activity]. On the other hand, exposure to PE MPs induced a genotoxic effect (assessed by the comet assay), as well as an increase in enzyme activity alpha-amylase, alkaline phosphatase, and carboxylesterases. However, we did not show synergistic, antagonistic, or additive effects caused by the combined exposure of P. reticulata to SARS-CoV-2 and PE MPs. Principal component analysis (PCA) and values from the "Integrated Biomarker Response" index indicate that exposure to SARS-CoV-2 was determinant for a more prominent effect in the evaluated animals. Therefore, our study sheds light on the ecotoxicity of the new coronavirus in non-target organisms and ratifies the need for more attention to the impacts of COVID-19 on aquatic biota.


Assuntos
COVID-19 , Poluentes Químicos da Água , Animais , Masculino , Humanos , Microplásticos/toxicidade , Polietileno/toxicidade , Plásticos/toxicidade , SARS-CoV-2 , Acetilcolinesterase , Pandemias , Butirilcolinesterase , Peixes , Biomarcadores , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
7.
Sci Total Environ ; 880: 163269, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37028679

RESUMO

While the multifaceted social, economic, and public health impacts associated with the COVID-19 pandemic are known, little is known about its effects on non-target aquatic ecosystems and organisms. Thus, we aimed to evaluate the potential ecotoxicity of SARS-CoV-2 lysate protein (SARS.CoV2/SP02.2020.HIAE.Br) in adult zebrafish (Danio rerio) at predicted environmentally relevant concentrations (0.742 and 2.226 pg/L), by 30 days. Although our data did not show locomotor alterations or anxiety-like or/and anxiolytic-like behavior, we noticed that exposure to SARS-CoV-2 negatively affected habituation memory and social aggregation of animals in response to a potential aquatic predator (Geophagus brasiliensis). An increased frequency of erythrocyte nuclear abnormalities was also observed in animals exposed to SARS-CoV-2. Furthermore, our data suggest that such changes were associated with a redox imbalance [↑ROS (reactive oxygen species), ↑H2O2 (hydrogen peroxide), ↓SOD (superoxide dismutase), and ↓CAT (catalase)], cholinesterasic effect [↑AChE (acetylcholinesterase) activity], as well as the induction of an inflammatory immune response [↑NO (nitric oxide), ↑IFN-γ (interferon-gamma), and ↓IL-10 (interleukin-10)]. For some biomarkers, we noticed that the response of the animals to the treatments was not concentration-dependent. However, principal component analysis (PCA) and the "Integrated Biomarker Response" index (IBRv2) indicated a more prominent ecotoxicity of SARS-CoV-2 at 2.226 pg/L. Therefore, our study advances knowledge about the ecotoxicological potential of SARS-CoV-2 and reinforces the presumption that the COVID-19 pandemic has negative implications beyond its economic, social, and public health impacts.


Assuntos
COVID-19 , Poluentes Químicos da Água , Animais , Humanos , Peixe-Zebra/fisiologia , SARS-CoV-2 , Estresse Oxidativo , Acetilcolinesterase/metabolismo , Ecossistema , Pandemias , Água Doce , Poluentes Químicos da Água/análise
8.
J Hazard Mater ; 451: 131173, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36924744

RESUMO

We aimed to evaluate the possible effects of the application of zinc oxide nanoparticles [ZnO NPs; 68.96 ± 33.71 nm; at 100 and 500 mg/kg in a soil mixture of the Typic Dystrophic Red Latosol type and sand (2:1 ratio)] in the cultivation of Panicum maximum (until 125 days), using different biomarkers in addition to evaluating the uptake of Zn by the plants. Furthermore, we assessed the possible transfer of ZnO NPs from P. maximum leaves to zebrafish and their potential. Plants cultivated in substrates with ZnO NPs at 500 mg/kg showed reduced germination rate and growth. However, at 100 mg/kg, plants showed higher biomass and productivity, associated with higher Zn uptake, without inducing oxidative and nitrosative stress. Zinc content in zebrafish was not associated with ingesting leaves of P. maximum cultivated in substrate containing ZnCl2 or ZnO NPs or with genotoxic, mutagenic, and biochemical effects. In conclusion, ZnO NPs (at 100 mg/kg) are promising in the cultivation of P. maximum, and their ingestion by zebrafish did not cause changes in the evaluated biomarkers. However, we recommend that studies with other animal models be conducted to comprehensively assess the ecotoxicological hazard associated with applying ZnO NPs in soil.


Assuntos
Nanopartículas Metálicas , Panicum , Óxido de Zinco , Animais , Óxido de Zinco/toxicidade , Óxido de Zinco/química , Guiné , Água Doce , Solo/química , Ingestão de Alimentos , Nanopartículas Metálicas/toxicidade
9.
Sci Total Environ ; 901: 165952, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37536599

RESUMO

The growing use of synthetic chemical compounds/substances in vector control of mosquitoes, associated with their adverse effects on the environment and non-target organisms, has demanded the development of eco-friendly alternatives. In this context, this study aimed to evaluate the larvicidal action of different cellulose microcrystalline (CMs) concentrations and investigate their toxicity mechanisms in Culex quinquefasciatus fourth instar larvae as a model species. Probit analysis revealed that the median lethal concentrations (LC50) for 24 h and 36 h exposure were 100 and 58.29 mg/L, respectively. We also showed that such concentrations induced a redox imbalance in the larvae, marked by an increase in the production of reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS), as well as a reduction in the activity of superoxide dismutase (SOD) and catalase (CAT). Furthermore, different alterations in the external morphology of the larvae were associated with the ingestion of CMs. On the other hand, exposure of adult zebrafish (Danio rerio) to LC5024h and LC5036h for seven days did not induce any behavioral changes or alterations mutagenic, genotoxic, biochemical, or in the production of cytokines IFN-γ and IL-10. Thus, taken together, our study demonstrates for the first time that the use of CMs can constitute a promising strategy in the control of C. quinquefasciatus larvae, combining insecticidal efficiency with an "eco-friendly" approach in the fight against an important mosquito vector of several human diseases.

10.
Sci Total Environ ; 815: 152841, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34995615

RESUMO

For our knowledge, the roadside soils end up being the deposit of various residues discarded by drivers or passengers, plus, that coming from the runoff of rainwater. Basically, we do not know the impacts that this pollution causes on animals which inhabit these environments. Thus, in this study, our objective was to evaluate how the presence of plastic microfibers (MPFs), organic compounds and heavy metals affect the redox and cholinesterase homeostasis of mound-building termite [Cornitermes cumulans (workers) adults]. As a result, we noticed that MPFs were present in all sampled areas, being higher in road area (RA). Regardless of the presence of these pollutants, animals sampled in the RA were those in which we observed greater production of reactive oxygen species (ROS), hydrogen peroxide (H2O2) and nitric oxide (NO) (via nitrite), whose higher activities of antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), was not able to counterbalance the oxidative stress suggested by the evaluated biomarkers. Moreover, we observed increase in acetylcholinesterase (AChE) activity in these same animals, which suggests a cholinesterasic effect. Such alterations were positively correlated with the contamination of soil samples by Cd, Pb, Zn, Fe and Cu, as well as with the presence of the 11,10-guaiane-type sesquiterpenoid compound, identified only in the RA. Thus, our unique study reveals that the contamination of roadside soils constitutes an additional environmental stressor to populations of C. cumulans, which reinforces the need for greater attention and further investigation to be given to the pollution of these environments.


Assuntos
Isópteros , Metais Pesados , Poluentes do Solo , Acetilcolinesterase , Animais , Monitoramento Ambiental , Homeostase , Peróxido de Hidrogênio , Metais Pesados/análise , Oxirredução , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
11.
Chemosphere ; 293: 133632, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35033516

RESUMO

Steel wool (SW) has a broad-spectrum of applicability, particularly as abrasives, cleaning household utensils and surfaces in general. However, when present in the natural environment, they can be ingested by animals, such as birds, and may represent a risk to the survival of individuals. Accordingly, in this study, we attempted the hypothesis that the ingestion of SW microfibers (SWMs) by Gallus gallus domesticus chicks (model system used) alters growth/development, induces redox imbalance and cholinesterasic effect, as well as promotes iron overload in different organs. For this, the animals received SWMs twice (within a 24-h interval) in an amount corresponding to 12% of their total stomach volume. At the end of the experiment, we observed less weight gain and less head growth, increased production of hydrogen peroxide (in the brain, liver, crop, and gizzard), nitrite (liver, crop, proventriculus and gizzard), malondialdehyde (brain, liver, muscle, proventriculus, and gizzard), along with increased superoxide dismutase activity in the liver, muscle and crop of animals exposed to SWMs. Such results were associated with iron overload observed in different organs, especially in liver, crop, and gizzard. Furthermore, we evidenced an anti-cholinesterasic effect in birds that ingested the SWMs, marked by a reduction in the acetylcholinesterase activity (in brain). Thus, our study sheds light on the (eco)toxicological potential of SWMs in avifauna, conceding us to associate their ingestion (despite ephemeral and occasional) with damage to the health of individuals, requiring a greater attention spotted to disposal of these materials in ecosystems.


Assuntos
Sobrecarga de Ferro , Acetilcolinesterase , Animais , Galinhas/fisiologia , Ecossistema , Aço
12.
Sci Total Environ ; 849: 157813, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35931160

RESUMO

The input of SARS-CoV-2 or its fragments into freshwater ecosystems (via domestic or hospital sewage) has raised concerns about its possible impacts on aquatic organisms. Thus, using mayfly larvae [Cloeon dipterum (L.), Ephemeroptera: Baetidae] as a model system, we aimed to evaluate the possible effects of the combined short exposure of SARS-CoV-2-derived peptides (named PSPD-2001, PSPD-2002, and PSPD-2003 - at 266.2 ng/L) with multiple emerging pollutants at ambient concentrations. After six days of exposure, we observed higher mortality of larvae exposed to SARS-CoV-2-derived peptides (alone or in combination with the pollutant mix) and a lower-body condition index than those unexposed larvae. In the "PSPD" and "Mix+PSPD" groups, the activity of superoxide dismutase, catalase, DPPH radical scavenging activity, and the total thiol levels were also lower than in the "control" group. In addition, we evidenced the induction of nitrosative stress (inferred by increased nitrite production) and reduced acetylcholinesterase activity by SARS-CoV-2-derived peptides. On the other hand, malondialdehyde levels in larvae exposed to treatments were significantly lower than in unexposed larvae. The values of the integrated biomarker response index and the principal component analysis (PCA) results confirmed the similarity between the responses of animals exposed to SARS-CoV-2-derived peptides (alone and in combination with the pollutant mix). Although viral peptides did not intensify the effects of the pollutant mix, our study sheds light on the potential ecotoxicological risk associated with the spread of the new coronavirus in aquatic environments. Therefore, we recommend exploring this topic in other organisms and experimental contexts.


Assuntos
COVID-19 , Poluentes Ambientais , Ephemeroptera , Acetilcolinesterase , Animais , Biomarcadores , Catalase , Ecossistema , Ephemeroptera/fisiologia , Larva , Malondialdeído , Nitritos , Peptídeos , SARS-CoV-2 , Esgotos , Compostos de Sulfidrila/farmacologia , Superóxido Dismutase
13.
Sci Total Environ ; 756: 143991, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33302068

RESUMO

Carbon-based materials have been considered very promising for the technological industry due to their unique physical and chemical properties, namely: ability to reduce production costs and to improve the efficiency of several products. However, there is little information on what is the level of exposure that leads to adverse effects and what kind of effects is expected in aquatic biota. Thus, the aim of the present study was to evaluate the toxicity of carbon nanofibers (CNFs) in dragonfly larvae (Aphylla williamsoni) based on predictive oxidative-stress biomarkers, antioxidant activity reduction and neurotoxicity. After ephemeral models' exposure to CNFs (48 h; at 500 µg/L), data have shown that these pollutants did not change larvae's nutritional status given the concentration of total soluble carbohydrates, total proteins and triglycerides in them. However, the levels of both nitric oxide and substances reactive to thiobarbituric acid (lipid peroxidation indicators) have increased and the antioxidant activity based on total thiol levels and on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (%) has reduced, and it suggests REDOX imbalance induction by CNFs. In addition, larvae exposed to these pollutants showed significant acetylcholinesterase activity reduction in comparison to the control group. Thus, the present study has brought further knowledge about how carbon-based materials can affect benthic macroinvertebrates and emphasized their ecotoxicological potential in freshwater environments.


Assuntos
Nanofibras , Odonatos , Acetilcolinesterase , Animais , Carbono , Larva
14.
Aquat Toxicol ; 233: 105795, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33677260

RESUMO

Although carbon nanotubes' (CNTs) toxicity in different experimental systems (in vivo and in vitro) is known, little is known about the toxic effects of carbon nanofibers (CNFs) on aquatic vertebrates. We herein investigated the potential impact of CNFs (1 and 10 mg/L) by using Physalaemus cuvieri tadpoles as experimental model. CNFs were able to induce nutritional deficit in animals after 48-h exposure to them, and this finding was inferred by reductions observed in body concentrations of total soluble carbohydrates, total proteins, and triglycerides. The increased production of hydrogen peroxide, reactive oxygen species and thiobarbituric acid reactive substances in tadpoles exposed to CNFs has suggested REDOX homeostasis change into oxidative stress. This process was correlated to the largest number of apoptotic and necrotic cells in the blood of these animals. On the other hand, the increased superoxide dismutase and catalase activity has suggested that the antioxidant system of animals exposed to CNFs was not enough to maintain REDOX balance. In addition, CNFs induced increase in acetylcholinesterase and butyrylcholinesterase activity, as well as changes in the number of neuromasts evaluated on body surface (which is indicative of the neurotoxic effect of nanomaterials on the assessed model system). To the best of our knowledge, this is the first report on the impact of CNFs on amphibians; therefore, it broadened our understanding about ecotoxicological risks associated with their dispersion in freshwater ecosystems and possible contribution to the decline in the populations of anurofauna species.


Assuntos
Carbono/toxicidade , Larva/efeitos dos fármacos , Larva/metabolismo , Nanofibras/toxicidade , Poluentes Químicos da Água/toxicidade , Acetilcolinesterase/metabolismo , Animais , Antioxidantes/metabolismo , Anuros , Ecossistema , Modelos Teóricos , Estresse Oxidativo/efeitos dos fármacos , Projetos de Pesquisa
15.
J Hazard Mater ; 404(Pt A): 124152, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33068943

RESUMO

The literature has largely shown the toxicity of petroleum-based PLA biomicroplastics (PLABioMPs) and encouraged the production of alternative materials to replace their use, such as biopolymers. However, knowledge concerning the effects of biopolymers on aquatic organisms remains under development. The hypothesis that the acute exposure (five days) to polylactic acid (PLA) biopolymers may lead to behavioral and biochemical changes and to their accumulation in Danio rerio larvae was tested. Based on the results, PLA biomicroplastics (PLA BioMPs) at concentration of 3 and 9 mg/L decreased swimming distance and speed of larvae in the open field test. This outcome suggests effects on animals' locomotor and exploration activities. Larvae's longer immobility time and greater permanence in the peripheral zone of the apparatus is indicative of anxiety-like behavior caused by the exposure to PLA BioMPs. Zebrafish larvae accumulated PLA BioMPs and their acetylcholinesterase activity was inhibited by their presence, which reinforces the accumulative potential of biopolymers and their direct or indirect role as anxiogenic agents, even at sublethal concentrations. The decreased activity of acetylcholinesterase reinforces the neurotoxic action in groups exposed to PLA BioMPs. The current study has confirmed the initial hypothesis and is an insight about the toxicity of these biopolymers in D. rerio larvae, since it deepens the discussion about the environmental risk of these substances in freshwater ecosystems.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Ecossistema , Larva , Poliésteres/toxicidade , Poluentes Químicos da Água/toxicidade
16.
J Hazard Mater ; 403: 123864, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33264938

RESUMO

The biometric, behavioral and biochemical toxicity of polystyrene nanoplastics (PS NPs) in aquatic freshwater vertebrates and in environmentally relevant concentrations remains poorly known. Thus, using different toxicity biomarkers we tested the hypothesis that the exposure of Ctenopharyngodon idella juveniles to small PS NPs concentrations (0.04 ng/L, 34 ng/L and 34 µg/L), for a short period-of-time, may affect their growth/development, individual and collective behavior, and biochemical parameters. Animals exposed to NPs did not show increased biometric parameters (i.e.: body biomass, total and standard length, peduncle height, head height and visceral somatic and hepatosomatic indices). Despite the lack of damage on the locomotor (open field test) and visual (visual stimulus test) abilities of the evaluated fish, the expected increase in locomotor activity during the vibratory stimulus test was not evident in animals exposed to NPs. Non-exposed animals were the only ones showing increased activity/locomotion time in the presence of the predatory stimulus during the individual anti-predatory response test. The behavior of animals directly confronted with a potential predator has evidenced the influence of NPs on shoals' aggregation and on the distance kept by individuals from the predatory stimulus. These changes were associated with PS NPs accumulation in animals' brains, oxidative stress and increased acetylcholinesterase activity (hepatic and cerebral). Therefore, the current study has confirmed the initial hypothesis and showed that, even at low concentrations, PS NPs can affect the health of C. idella individuals at early life stage.


Assuntos
Carpas , Nanopartículas , Poluentes Químicos da Água , Animais , Nanopartículas/toxicidade , Estresse Oxidativo , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade
17.
Sci Total Environ ; 783: 146994, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-33865141

RESUMO

Different and alternative renewable-source materials, commonly called bioplastics, have been proposed due to the high production and consumption of petroleum-derived plastics and to their high toxicity in the biota. However, their toxicological safety has not yet been assessed in a comprehensive way; therefore, their effects on several animal groups remain completely unknown. Thus, we aimed at testing the following hypothesis: the exposure of Physalaemus cuvieri tadpoles to polylaic acid biomicroplastic (PLA BioMP) at environmentally relevant concentrations (760 and 15,020 µg/L) induces physiological changes in them. Based on the collected data, biopolymer uptake changed tadpoles' growth and development features, reduced their lipid reserves (it was inferred by decreased triglyceride levels), as well as increased reactive oxygen and nitric oxide species production after 14-day exposure. The proportional increase in total glutathione levels, and in superoxide dismutase and catalase activity, was not enough to counterbalance the production of reactive species. In addition, the two tested concentrations caused cholinesterase effect, which was marked by increased acetylcholinesterase and butyrylcholinesterase. This finding is indicative of the neurotoxic action of PLA BioMP. To the best of our knowledge, this is the first report on the harmful consequences of exposing amphibian representatives to the herein tested biopolymers. Therefore, this finding encourages further studies and contributes to demystify the idea that bioplastics are "harmless" to the aquatic biota in freshwater environments.


Assuntos
Poluentes Químicos da Água , Animais , Anuros , Larva , Poliésteres , Poluentes Químicos da Água/toxicidade
18.
Environ Pollut ; 283: 117054, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33848902

RESUMO

Although many polymers are known by their toxicity, we know nothing about the impact of polyethylene glycol (PEG) on anurofauna. Its presence in different products and disposal in aquatic environments turn assessments about its impact on amphibians an urgent matter. Accordingly, we tested the hypothesis that short-time exposure (72 h) of tadpoles belonging to the species Physalaemus cuvieri (Anura, Leptodactylidae) to PEG induces oxidative stress and neurotoxicity on them. We observed that polymer uptake in P. cuvieri occurred after exposure to 5 and 10 mg/L of PEG without inducing changes in their nitrite levels neither at the levels of substances reactive to thiobarbituric acid. However, hydrogen peroxide and reactive oxygen species production was higher in animals exposed to PEG, whose catalase and superoxide dismutase levels were not enough to counterbalance the production of these reactive species. Therefore, this finding suggests physiological changes altering REDOX homeostasis into oxidative stress. In addition, the increased activity of acetylcholinesterase and butyrylcholinesterase, and reduction in superficial neuromasts, confirmed PEG's neurotoxic potential. To the best of our knowledge, this is the first report on PEG's biological impact on a particular amphibian species. The study has broadened the understanding about ecotoxicological risks associated with water pollution by these polymers, as well as motivated further investigations on its impacts on amphibians' health and on the dynamics of their natural populations.


Assuntos
Anuros , Poluentes Químicos da Água , Animais , Ecotoxicologia , Larva , Polietilenoglicóis/toxicidade , Poluentes Químicos da Água/toxicidade
20.
Sci Total Environ ; 681: 275-291, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31103665

RESUMO

Tannery industries generate large amounts of tannery effluents (TE), which have been considered highly toxic to various groups of animals. However, the identification and characterization of the impact of this mix of pollutants on birds is still highly incipient. So, our goal was to evaluate the possible biological changes of Coturnix coturnix japonica, exposed for 45 days, to different dilutions of TE (1.4%, 3.1% and 6.5%), using behavioural biomarkers, mutagenics and egg production. When submitted to the behavioural tests, quails that ingested TE presented behaviour compatible with an anxiolytic effect in the open field test; absence of emotional reactivity in the object recognition test; reduced rates of predation of Tenebrio molitor larvae (potential prey); as well as an anti-predatory defensive response deficit when confronted, especially with Felis catus males (potential predator). In addition, we observed increased biomass of the liver, increased feed conversion index and lower feed efficiency index; mutagenic effect of TE (inferred by the increase of nuclear erythrocyte abnormalities); reduced productive performance and egg quality, in addition to different staining patterns of the eggs produced by quails from the control group. Therefore, our study confirms the toxicity of TE in C. coturnix japonica, even in small dilutions. While behavioural changes demonstrate the neurotoxic potential of the pollutant, the other alterations suggest that the mechanisms of action of its chemical constituents are not selective, that is, they act systemically, acting synergistic, antagonistic or additively, causing harmful effects in animals.


Assuntos
Coturnix/fisiologia , Monitoramento Ambiental , Curtume , Testes de Toxicidade , Águas Residuárias/toxicidade , Poluentes Químicos da Água/toxicidade , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA