Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 44(1): 177-191, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38150518

RESUMO

BACKGROUND: The heart relies heavily on external fatty acid (FA) for energy production. VEGFB (vascular endothelial growth factor B) has been shown to promote endothelial FA uptake by upregulating FA transporters. However, its impact on LPL (lipoprotein lipase)-mediated lipolysis of lipoproteins, a major source of FA for cardiac use, is unknown. METHODS: VEGFB transgenic (Tg) rats were generated by using the α-myosin heavy chain promoter to drive cardiomyocyte-specific overexpression. To measure coronary LPL activity, Langendorff hearts were perfused with heparin. In vivo positron emission tomography imaging with [18F]-triglyceride-fluoro-6-thia-heptadecanoic acid and [11C]-palmitate was used to determine cardiac FA uptake. Mitochondrial FA oxidation was evaluated by high-resolution respirometry. Streptozotocin was used to induce diabetes, and cardiac function was monitored using echocardiography. RESULTS: In Tg hearts, the vectorial transfer of LPL to the vascular lumen is obstructed, resulting in LPL buildup within cardiomyocytes, an effect likely due to coronary vascular development with its associated augmentation of insulin action. With insulin insufficiency following fasting, VEGFB acted unimpeded to facilitate LPL movement and increase its activity at the coronary lumen. In vivo PET imaging following fasting confirmed that VEGFB induced a greater FA uptake to the heart from circulating lipoproteins as compared with plasma-free FAs. As this was associated with augmented mitochondrial oxidation, lipid accumulation in the heart was prevented. We further examined whether this property of VEGFB on cardiac metabolism could be useful following diabetes and its associated cardiac dysfunction, with attendant loss of metabolic flexibility. In Tg hearts, diabetes inhibited myocyte VEGFB gene expression and protein secretion together with its downstream receptor signaling, effects that could explain its lack of cardioprotection. CONCLUSIONS: Our study highlights the novel role of VEGFB in LPL-derived FA supply and utilization. In diabetes, loss of VEGFB action may contribute toward metabolic inflexibility, lipotoxicity, and development of diabetic cardiomyopathy.


Assuntos
Cardiomiopatias Diabéticas , Insulina , Ratos , Animais , Insulina/farmacologia , Fator B de Crescimento do Endotélio Vascular/genética , Fator B de Crescimento do Endotélio Vascular/metabolismo , Ratos Wistar , Miócitos Cardíacos/metabolismo , Ácidos Graxos/metabolismo , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Triglicerídeos/metabolismo , Lipase Lipoproteica/metabolismo , Miocárdio/metabolismo
2.
FASEB J ; 36(1): e22088, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34921686

RESUMO

Hyperinsulinemia is commonly viewed as a compensatory response to insulin resistance, yet studies have demonstrated that chronically elevated insulin may also drive insulin resistance. The molecular mechanisms underpinning this potentially cyclic process remain poorly defined, especially on a transcriptome-wide level. Transcriptomic meta-analysis in >450 human samples demonstrated that fasting insulin reliably and negatively correlated with INSR mRNA in skeletal muscle. To establish causality and study the direct effects of prolonged exposure to excess insulin in muscle cells, we incubated C2C12 myotubes with elevated insulin for 16 h, followed by 6 h of serum starvation, and established that acute AKT and ERK signaling were attenuated in this model of in vitro hyperinsulinemia. Global RNA-sequencing of cells both before and after nutrient withdrawal highlighted genes in the insulin receptor (INSR) signaling, FOXO signaling, and glucose metabolism pathways indicative of 'hyperinsulinemia' and 'starvation' programs. Consistently, we observed that hyperinsulinemia led to a substantial reduction in Insr gene expression, and subsequently a reduced surface INSR and total INSR protein, both in vitro and in vivo. Bioinformatic modeling combined with RNAi identified SIN3A as a negative regulator of Insr mRNA (and JUND, MAX, and MXI as positive regulators of Irs2 mRNA). Together, our analysis identifies mechanisms which may explain the cyclic processes underlying hyperinsulinemia-induced insulin resistance in muscle, a process directly relevant to the etiology and disease progression of type 2 diabetes.


Assuntos
Antígenos CD/biossíntese , Regulação para Baixo , Hiperinsulinismo/metabolismo , Resistência à Insulina , Músculo Esquelético/metabolismo , RNA Mensageiro/biossíntese , Receptor de Insulina/biossíntese , Animais , Antígenos CD/genética , Linhagem Celular , Humanos , Hiperinsulinismo/genética , Camundongos , Camundongos Knockout , RNA Mensageiro/genética , RNA-Seq , Receptor de Insulina/genética
3.
Am J Physiol Endocrinol Metab ; 321(6): E753-E765, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34747201

RESUMO

Cardiac muscle uses multiple sources of energy including glucose and fatty acid (FA). The heart cannot synthesize FA and relies on obtaining it from other sources, with lipoprotein lipase (LPL) breakdown of lipoproteins suggested to be a key source of FA for cardiac use. Recent work has indicated that cardiac vascular endothelial growth factor B (VEGFB) overexpression expands the coronary vasculature and facilitates metabolic reprogramming that favors glucose utilization. We wanted to explore whether this influence of VEGFB on cardiac metabolism involves regulation of LPL activity with consequent effects on lipotoxicity and insulin signaling. The transcriptomes of rats with and without cardiomyocyte-specific overexpression of human VEGFB were compared by using RNA sequencing. Isolated perfused hearts or cardiomyocytes incubated with heparin were used to enable measurement of LPL activity. Untargeted metabolomic analysis was performed for quantification of cardiac lipid metabolites. Cardiac insulin sensitivity was evaluated using fast-acting insulin. Isolated heart and cardiomyocytes were used to determine transgene-encoded VEGFB isoform secretion patterns and mitochondrial oxidative capacity using high-resolution respirometry and extracellular flux analysis. In vitro, transgenic cardiomyocytes incubated overnight and thus exposed to abundantly secreted VEGFB isoforms, in the absence of any in vivo confounding regulators of cardiac metabolism, demonstrated higher basal oxygen consumption. In the whole heart, VEGFB overexpression induced an angiogenic response that was accompanied by limited cardiac LPL activity through multiple mechanisms. This was associated with a lowered accumulation of lipid intermediates, diacylglycerols and lysophosphatidylcholine, that are known to influence insulin action. In response to exogenous insulin, transgenic hearts demonstrated increased insulin sensitivity. In conclusion, the interrogation of VEGFB function on cardiac metabolism uncovered an intriguing and previously unappreciated effect to lower LPL activity and prevent lipid metabolite accumulation to improve insulin action. VEGFB could be a potential cardioprotective therapy to treat metabolic disorders, for example, diabetes.NEW & NOTEWORTHY In hearts overexpressing vascular endothelial growth factor B (VEGFB), besides its known angiogenic response, multiple regulatory mechanisms lowered coronary LPL. This was accompanied by limited cardiac lipid metabolite accumulation with an augmentation of cardiac insulin action. Our data for the first time links VEGFB to coronary LPL in regulation of cardiac metabolism. VEGFB may be cardioprotective in metabolic disorders like diabetes.


Assuntos
Resistência à Insulina/genética , Lipase Lipoproteica/metabolismo , Miocárdio/metabolismo , Fator B de Crescimento do Endotélio Vascular/genética , Animais , Células Cultivadas , Ativação Enzimática/genética , Feminino , Coração/fisiologia , Insulina/metabolismo , Masculino , Especificidade de Órgãos/genética , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Regulação para Cima/genética , Fator B de Crescimento do Endotélio Vascular/metabolismo
4.
Adv Exp Med Biol ; 1221: 721-745, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32274734

RESUMO

Traditionally, the management of diabetes has focused mainly on controlling high blood glucose levels. Unfortunately, despite valiant efforts to normalize this blood glucose, poor medication management predisposes these patients to heart failure. Following diabetes, how the heart utilizes different sources of fuel for energy is key to the development of heart failure. The diabetic heart switches from using both glucose and fats, to predominately using fats as an energy resource for maintaining its activities. This transformation to using fats as an exclusive source of energy is helpful in the initial stages of the disease and is tightly controlled. However, over the progression of diabetes, there is a loss of this controlled supply and use of fats, which ultimately has terrible consequences since the uncontrolled use of fats produces toxic by-products which weaken heart function and cause heart disease. Heparanase is a key player that directs how much fats are provided to the heart and does so in association with several partners like LPL and VEGFs. Together, they regulate the amount of fats supplied, and their subsequent breakdown to provide energy. Following diabetes, there is a disruption in this network resulting in fat oversupply and cell death. Understanding how the heparanase-LPL-VEGFs "ensemble" cooperates, and its dysfunction in the diabetic heart would be useful in restoring metabolic equilibrium and limiting diabetes-related cardiac damage.


Assuntos
Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Células Endoteliais/enzimologia , Glucuronidase/metabolismo , Cardiopatias/metabolismo , Cardiopatias/patologia , Miócitos Cardíacos/enzimologia , Diabetes Mellitus/enzimologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Cardiopatias/enzimologia , Humanos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia
5.
J Mol Cell Cardiol ; 131: 29-40, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31004678

RESUMO

Although cancer cells use heparanase for tumor metastasis, favourable effects of heparanase have been reported in the management of Alzheimer's disease and diabetes. Indeed, we previously established a protective function for heparanase in the acutely diabetic heart, where it conferred cardiomyocyte resistance to oxidative stress and apoptosis by provoking changes in gene expression. In this study, we tested if overexpression of heparanase can protect the heart against chemically induced or ischemia/reperfusion (I/R) injury. Transcriptomic analysis of Hep-tg hearts reveal that 240 genes related to the stress response, immune response, cell death, and development were altered in a pro-survival direction encompassing genes promoting the unfolded protein response (UPR) and autophagy, as well as those protecting against oxidative stress. The observed UPR activation was adaptive and not apoptotic, was mediated by activation of ATF6α, and when combined with mTOR inhibition, induced autophagy. Subjecting wild type (WT) mice to increasing concentrations of the ER stress inducer thapsigargin evoked a transition from adaptive to apoptotic UPR, an effect that was attenuated in Hep-tg mouse hearts. Consistent with these observations, when exposed to I/R, the infarct size and markers of apoptosis were significantly lower in the Hep-tg heart compared to WT. Finally, UPR and autophagy inhibitors reduced the protective effects of heparanase overexpression during I/R. Our data suggest that the mechanisms that underlie the role of heparanase in promoting cell survival could be uniquely beneficial to the heart by providing protection against cellular stresses, and could be useful for exploitation as a therapeutic target for the treatment of heart disease.


Assuntos
Glucuronidase/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Substâncias Protetoras/metabolismo , Animais , Apoptose/fisiologia , Autofagia/fisiologia , Sobrevivência Celular/fisiologia , Coração/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar , Tapsigargina/metabolismo , Resposta a Proteínas não Dobradas/fisiologia
6.
FASEB J ; 32(3): 1196-1206, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29122848

RESUMO

Excess circulating insulin is associated with obesity in humans and in animal models. However, the physiologic causality of hyperinsulinemia in adult obesity has rightfully been questioned because of the absence of clear evidence that weight loss can be induced by acutely reversing diet-induced hyperinsulinemia. Herein, we describe the consequences of inducible, partial insulin gene deletion in a mouse model in which animals have already been made obese by consuming a high-fat diet. A modest reduction in insulin production/secretion was sufficient to cause significant weight loss within 5 wk, with a specific effect on visceral adipose tissue. This result was associated with a reduction in the protein abundance of the lipodystrophy gene polymerase I and transcript release factor ( Ptrf; Cavin) in gonadal adipose tissue. RNAseq analysis showed that reduced insulin and weight loss also associated with a signature of reduced innate immunity. This study demonstrates that changes in circulating insulin that are too fine to adversely affect glucose homeostasis nonetheless exert control over adiposity.-Page, M. M., Skovsø, S., Cen, H., Chiu, A. P., Dionne, D. A., Hutchinson, D. F., Lim, G. E., Szabat, M., Flibotte, S., Sinha, S., Nislow, C., Rodrigues, B., Johnson, J. D. Reducing insulin via conditional partial gene ablation in adults reverses diet-induced weight gain.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Deleção de Genes , Homeostase , Insulina/fisiologia , Obesidade/prevenção & controle , Aumento de Peso/genética , Adiposidade , Animais , Peso Corporal , Masculino , Camundongos , Camundongos Knockout , Obesidade/etiologia , Obesidade/patologia
7.
Am J Physiol Heart Circ Physiol ; 314(1): H82-H94, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28986359

RESUMO

In the diabetic heart, there is excessive dependence on fatty acid (FA) utilization to generate ATP. Lipoprotein lipase (LPL)-mediated hydrolysis of circulating triglycerides is suggested to be the predominant source of FA for cardiac utilization during diabetes. In the heart, the majority of LPL is synthesized in cardiomyocytes and secreted onto cell surface heparan sulfate proteoglycan (HSPG), where an endothelial cell (EC)-releasable ß-endoglycosidase, heparanase cleaves the side chains of HSPG to liberate LPL for its onward movement across the EC. EC glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1) captures this released enzyme at its basolateral side and shuttles it across to its luminal side. We tested whether the diabetes-induced increase of transforming growth factor-ß (TGF-ß) can influence the myocyte and EC to help transfer LPL to the vascular lumen to generate triglyceride-FA. In response to high glucose and EC heparanase secretion, this endoglycosidase is taken up by the cardiomyocyte (Wang Y, Chiu AP, Neumaier K, Wang F, Zhang D, Hussein B, Lal N, Wan A, Liu G, Vlodavsky I, Rodrigues B. Diabetes 63: 2643-2655, 2014) to stimulate matrix metalloproteinase-9 expression and the conversion of latent to active TGF-ß. In the cardiomyocyte, TGF-ß activation of RhoA enhances actin cytoskeleton rearrangement to promote LPL trafficking and secretion onto cell surface HSPG. In the EC, TGF-ß signaling promotes mesodermal homeobox 2 translocation to the nucleus, which increases the expression of GPIHBP1, which facilitates movement of LPL to the vascular lumen. Collectively, our data suggest that in the diabetic heart, TGF-ß actions on the cardiomyocyte promotes movement of LPL, whereas its action on the EC facilitates LPL shuttling. NEW & NOTEWORTHY Endothelial cells, as first responders to hyperglycemia, release heparanase, whose subsequent uptake by cardiomyocytes amplifies matrix metalloproteinase-9 expression and activation of transforming growth factor-ß. Transforming growth factor-ß increases lipoprotein lipase secretion from cardiomyocytes and promotes mesodermal homeobox 2 to enhance glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1-dependent transfer of lipoprotein lipase across endothelial cells, mechanisms that accelerate fatty acid utilization by the diabetic heart.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Experimental/enzimologia , Cardiomiopatias Diabéticas/enzimologia , Células Endoteliais/enzimologia , Metabolismo Energético , Ácidos Graxos/metabolismo , Lipase Lipoproteica/metabolismo , Miócitos Cardíacos/enzimologia , Animais , Comunicação Celular , Células Cultivadas , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/fisiopatologia , Cardiomiopatias Diabéticas/sangue , Cardiomiopatias Diabéticas/fisiopatologia , Glucuronidase/metabolismo , Proteínas de Homeodomínio/metabolismo , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Proteínas Musculares/metabolismo , Ratos Wistar , Receptores de Lipoproteínas/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
8.
Biochim Biophys Acta ; 1861(10): 1434-41, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26995461

RESUMO

In people with diabetes, inadequate pharmaceutical management predisposes the patient to heart failure, which is the leading cause of diabetes related death. One instigator for this cardiac dysfunction is change in fuel utilization by the heart. Thus, following diabetes, when cardiac glucose utilization is impaired, the heart undergoes metabolic transformation wherein it switches to using fats as an exclusive source of energy. Although this switching is geared to help the heart initially, in the long term, this has detrimental effects on cardiac function. These include the generation of noxious byproducts, which damage the cardiomyocytes, and ultimately result in increased morbidity and mortality. A key perpetrator that may be responsible for organizing this metabolic disequilibrium is lipoprotein lipase (LPL), the enzyme responsible for providing fat to the hearts. Either exaggeration or reduction in its activity following diabetes could lead to heart dysfunction. Given the disturbing news that diabetes is rampant across the globe, gaining more insight into the mechanism(s) by which cardiac LPL is regulated may assist other researchers in devising new therapeutic strategies to restore metabolic equilibrium, to help prevent or delay heart disease seen during diabetes. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.


Assuntos
Células Endoteliais/metabolismo , Lipase Lipoproteica/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Diabetes Mellitus/metabolismo , Glucuronidase/metabolismo , Humanos , Modelos Biológicos
9.
Am J Physiol Heart Circ Physiol ; 312(6): H1163-H1175, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28314760

RESUMO

Vascular endothelial growth factor B (VEGFB) is highly expressed in metabolically active tissues, such as the heart and skeletal muscle, suggesting a function in maintaining oxidative metabolic and contractile function in these tissues. Multiple models of heart failure have indicated a significant drop in VEGFB. However, whether there is a role for decreased VEGFB in diabetic cardiomyopathy is currently unknown. Of the VEGFB located in cardiomyocytes, there is a substantial and readily releasable pool localized on the cell surface. The immediate response to high glucose and the secretion of endothelial heparanase is the release of this surface-bound VEGFB, which triggers signaling pathways and gene expression to influence endothelial cell (autocrine action) and cardiomyocyte (paracrine effects) survival. Under conditions of hyperglycemia, when VEGFB production is impaired, a robust increase in vascular endothelial growth factor receptor (VEGFR)-1 expression ensues as a possible mechanism to enhance or maintain VEGFB signaling. However, even with an increase in VEGFR1 after diabetes, cardiomyocytes are unable to respond to VEGFB. In addition to the loss of VEGFB production and signaling, evaluation of latent heparanase, the protein responsible for VEGFB release, also showed a significant decline in expression in whole hearts from animals with chronic or acute diabetes. Defects in these numerous VEGFB pathways were associated with an increased cell death signature in our models of diabetes. Through this bidirectional interaction between endothelial cells (which secrete heparanase) and cardiomyocytes (which release VEGFB), this growth factor could provide the diabetic heart protection against cell death and may be a critical tool to delay or prevent cardiomyopathy.NEW & NOTEWORTHY We discovered a bidirectional interaction between endothelial cells (which secrete heparanase) and cardiomyocytes [which release vascular endothelial growth factor B (VEGFB)]. VEGFB promoted cell survival through ERK and cell death gene expression. Loss of VEGFB and its downstream signaling is an early event following hyperglycemia, is sustained with disease progression, and could explain diabetic cardiomyopathy.


Assuntos
Apoptose , Cardiomiopatias Diabéticas/metabolismo , Miocárdio/metabolismo , Transdução de Sinais , Fator B de Crescimento do Endotélio Vascular/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Comunicação Autócrina , Células Cultivadas , Diabetes Mellitus Experimental/induzido quimicamente , Cardiomiopatias Diabéticas/induzido quimicamente , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/patologia , Células Endoteliais/enzimologia , Glucuronidase/metabolismo , Masculino , Miocárdio/patologia , Comunicação Parácrina , Ratos Wistar , Estreptozocina , Fator B de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
10.
Arterioscler Thromb Vasc Biol ; 36(1): 145-55, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26586663

RESUMO

OBJECTIVE: Lipoprotein lipase (LPL)-mediated triglyceride hydrolysis is the major source of fatty acid for cardiac energy. LPL, synthesized in cardiomyocytes, is translocated across endothelial cells (EC) by its transporter glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1). Previously, we have reported an augmentation in coronary LPL, which was linked to an increased expression of GPIHBP1 following moderate diabetes mellitus. We examined the potential mechanism by which hyperglycemia amplifies GPIHBP1. APPROACH AND RESULTS: Exposure of rat aortic EC to high glucose induced GPIHBP1 expression and amplified LPL shuttling across these cells. This effect coincided with an elevated secretion of heparanase. Incubation of EC with high glucose or latent heparanase resulted in secretion of vascular endothelial growth factor (VEGF). Primary cardiomyocytes, being a rich source of VEGF, when cocultured with EC, restored EC GPIHBP1 that is lost because of cell passaging. Furthermore, recombinant VEGF induced EC GPIHBP1 mRNA and protein expression within 24 hours, an effect that could be prevented by a VEGF neutralizing antibody. This VEGF-induced increase in GPIHBP1 was through Notch signaling that encompassed Delta-like ligand 4 augmentation and nuclear translocation of the Notch intracellular domain. Finally, cardiomyocytes from severely diabetic animals exhibiting attenuation of VEGF were unable to increase EC GPIHBP1 expression and had lower LPL activity at the vascular lumen in perfused hearts. CONCLUSION: EC, as the first responders to hyperglycemia, can release heparanase to liberate myocyte VEGF. This growth factor, by activating EC Notch signaling, is responsible for facilitating GPIHBP1-mediated translocation of LPL across EC and regulating LPL-derived fatty acid delivery to the cardiomyocytes.


Assuntos
Vasos Coronários/enzimologia , Diabetes Mellitus Experimental/enzimologia , Células Endoteliais/enzimologia , Lipase Lipoproteica/metabolismo , Miócitos Cardíacos/metabolismo , Comunicação Parácrina , Receptores de Lipoproteínas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Glicemia/metabolismo , Células Cultivadas , Técnicas de Cocultura , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/genética , Metabolismo Energético , Regulação da Expressão Gênica , Glucuronidase/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Transporte Proteico , RNA Mensageiro/metabolismo , Ratos Wistar , Receptores de Lipoproteínas/genética , Receptores Notch/metabolismo , Transdução de Sinais , Fatores de Tempo
11.
Biochim Biophys Acta ; 1851(2): 163-71, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25463481

RESUMO

Cardiac lipoprotein lipase (LPL) is a pivotal enzyme controlling heart metabolism by providing the majority of fatty acids required by this organ. From activation in cardiomyocytes to secretion to the vascular lumen, cardiac LPL is regulated by multiple pathways, which are altered during diabetes. Hence, dimerization/activation of LPL is modified following diabetes, a process controlled by lipase maturation factor 1. The role of AMP-activated protein kinase, protein kinase D, and heparan sulfate proteoglycans, intrinsic factors that regulate the intracellular transport of LPL is also shifted, and is discussed. More recent studies have identified several exogenous factors released from endothelial cells (EC) and adipose tissue that are required for proper functioning of LPL. In response to hyperglycemia, both active and latent heparanase are released from EC to facilitate LPL secretion. Diabetes also increased the expression of glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) in EC, which mediates the transport of LPL across EC. Angiopoietin-like protein 4 secreted from the adipose tissue has the potential to reduce coronary LPL activity. Knowledge of these intrinsic and extrinsic factors could be used develop therapeutic targets to normalize LPL function, and maintain cardiac energy homeostasis after diabetes.


Assuntos
Diabetes Mellitus/enzimologia , Cardiomiopatias Diabéticas/enzimologia , Ácidos Graxos/metabolismo , Lipase Lipoproteica/metabolismo , Miócitos Cardíacos/enzimologia , Tecido Adiposo/metabolismo , Animais , Glicemia/metabolismo , Diabetes Mellitus/sangue , Diabetes Mellitus/genética , Cardiomiopatias Diabéticas/sangue , Cardiomiopatias Diabéticas/genética , Células Endoteliais/metabolismo , Metabolismo Energético , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Humanos , Lipase Lipoproteica/genética , Transdução de Sinais
12.
Crit Rev Clin Lab Sci ; 52(3): 138-49, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25597500

RESUMO

Cardiac diseases have been extensively studied following diabetes and altered metabolism has been implicated in its initiation. In this context, there is a shift from glucose utilization to predominantly fatty acid metabolism. We have focused on the micro- and macro-environments that the heart uses to provide fatty acids to the cardiomyocyte. Specifically, we will discuss the cross talk between endothelial cells, smooth muscles and cardiomyocytes, and their respective secretory products that allows for this shift in metabolism. These changes will then be linked to alterations in the cardiovascular system and the augmented heart disease observed during diabetes. Traditionally, the heart was only thought of as an organ that supplies oxygen and nutrients to the body through its function as a pump. However, the heart as an endocrine organ has also been suggested. Secreted products from the cardiomyocytes include the natriuretic peptides atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). Both have been shown to have vasodilatory, diuretic and antihypertensive effects. These peptides have been extensively studied and their deficiency is considered to be a major cause for the initiation of cardiovascular and cardiometabolic disorders. Another secretory enzyme, lipoprotein lipase (LPL), has been implicated in diabetic heart disease. LPL is a triglyceride-hydrolyzing enzyme that is synthesized within the cardiomyocyte and secreted towards the lumen under various conditions. For example, moderate or short-term hyperglycemia stimulates the release of LPL from the cardiomyocytes towards the endothelial cells. This process allows LPL to contact lipoprotein triglycerides, initiating their break down, with the product of lipolysis (free fatty acids, FA) translocating towards the cardiomyocytes for energy consumption. This mechanism compensates for the lack of glucose availability following diabetes. Under prolonged, chronic conditions of hyperglycemia, there is a need to inhibit this mechanism to avoid the excess delivery of FA to the cardiomyocytes, an effect that is known to induce cardiac cell death. Thus, LPL inhibition is made possible by a FA-induced activation of PPAR ß/δ, which augments angiopoietin-like 4 (Angptl4), an inhibitor of LPL activity. In the current review, we will focus on the mediators and conditions that regulate LPL and Angptl4 secretion from the cardiomyocyte, which are critical for maintaining cardiac metabolic homeostasis.


Assuntos
Angiopoietinas/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Lipase Lipoproteica/metabolismo , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Proteína 4 Semelhante a Angiopoietina , Angiopoietinas/sangue , Animais , Biomarcadores/sangue , Cardiomiopatias Diabéticas/sangue , Cardiomiopatias Diabéticas/enzimologia , Humanos , Lipase Lipoproteica/sangue , Miócitos Cardíacos/enzimologia
13.
J Biol Chem ; 288(26): 18975-86, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23678000

RESUMO

Ca(2+) fluxes between adjacent organelles are thought to control many cellular processes, including metabolism and cell survival. In vitro evidence has been presented that constitutive Ca(2+) flux from intracellular stores into mitochondria is required for basal cellular metabolism, but these observations have not been made in vivo. We report that controlled in vivo depletion of cardiac RYR2, using a conditional gene knock-out strategy (cRyr2KO mice), is sufficient to reduce mitochondrial Ca(2+) and oxidative metabolism, and to establish a pseudohypoxic state with increased autophagy. Dramatic metabolic reprogramming was evident at the transcriptional level via Sirt1/Foxo1/Pgc1α, Atf3, and Klf15 gene networks. Ryr2 loss also induced a non-apoptotic form of programmed cell death associated with increased calpain-10 but not caspase-3 activation or endoplasmic reticulum stress. Remarkably, cRyr2KO mice rapidly exhibited many of the structural, metabolic, and molecular characteristics of heart failure at a time when RYR2 protein was reduced 50%, a similar degree to that which has been reported in heart failure. RYR2-mediated Ca(2+) fluxes are therefore proximal controllers of mitochondrial Ca(2+), ATP levels, and a cascade of transcription factors controlling metabolism and survival.


Assuntos
Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Alelos , Animais , Apoptose , Autofagia , Morte Celular , Sobrevivência Celular , Retículo Endoplasmático/metabolismo , Hipóxia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigênio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Transcrição Gênica
14.
Am J Physiol Endocrinol Metab ; 306(11): E1274-83, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24735886

RESUMO

In diabetes, when glucose uptake and oxidation are impaired, the heart is compelled to use fatty acid (FA) almost exclusively for ATP. The vascular content of lipoprotein lipase (LPL), the rate-limiting enzyme that determines circulating triglyceride clearance, is largely responsible for this FA delivery and increases following diabetes. Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein [GPIHBP1; a protein expressed abundantly in the heart in endothelial cells (EC)] collects LPL from the interstitial space and transfers it across ECs onto the luminal binding sites of these cells, where the enzyme is functional. We tested whether ECs respond to hyperglycemia by increasing GPIHBP1. Streptozotocin diabetes increased cardiac LPL activity and GPIHBP1 gene and protein expression. The increased LPL and GPIHBP1 were located at the capillary lumen. In vitro, passaging EC caused a loss of GPIHBP1, which could be induced on exposure to increasing concentrations of glucose. The high-glucose-induced GPIHBP1 increased LPL shuttling across EC monolayers. GPIHBP1 expression was linked to the EC content of heparanase. Moreover, active heparanase increased GPIHBP1 gene and protein expression. Both ECs and myocyte heparan sulfate proteoglycan-bound platelet-derived growth factor (PDGF) released by heparanase caused augmentation of GPIHBP1. Overall, our data suggest that this protein "ensemble" (heparanase-PDGF-GPIHBP1) cooperates in the diabetic heart to regulate FA delivery and utilization by the cardiomyocytes. Interrupting this axis may be a novel therapeutic strategy to restore metabolic equilibrium, curb lipotoxicity, and help prevent or delay heart dysfunction that is characteristic of diabetes.


Assuntos
Células Endoteliais/metabolismo , Hiperglicemia/metabolismo , Lipase Lipoproteica/biossíntese , Receptores de Lipoproteínas/biossíntese , Animais , Transporte Biológico Ativo/fisiologia , Western Blotting , Bovinos , Técnicas de Cocultura , Citocinas/biossíntese , Diabetes Mellitus Experimental/metabolismo , Imunofluorescência , Glucose/farmacologia , Glucuronidase/metabolismo , Lipólise/fisiologia , Masculino , Monócitos/metabolismo , Miócitos Cardíacos/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real
15.
Hepatology ; 57(2): 543-54, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22941940

RESUMO

UNLABELLED: Obesity is highly associated with dyslipidemia and cardiovascular disease. However, the mechanism behind this association is not completely understood. The hormone leptin may be a molecular link between obesity and dysregulation of lipid metabolism. Leptin can affect lipid metabolism independent of its well-known effects on food intake and energy expenditure, but exactly how this occurs is ill-defined. We hypothesized that since leptin receptors are found on the liver and the liver plays an integral role in regulating lipid metabolism, leptin may affect lipid metabolism by acting directly on the liver. To test this hypothesis, we generated mice with a hepatocyte-specific loss of leptin signaling. We previously showed that these mice have increased insulin sensitivity and elevated levels of liver triglycerides compared with controls. Here, we show that mice lacking hepatic leptin signaling have decreased levels of plasma apolipoprotein B yet increased levels of very low density lipoprotein (VLDL) triglycerides, suggesting alterations in triglyceride incorporation into VLDL or abnormal lipoprotein remodeling in the plasma. Indeed, lipoprotein profiles revealed larger apolipoprotein B-containing lipoprotein particles in mice with ablated liver leptin signaling. Loss of leptin signaling in the liver was also associated with a substantial increase in lipoprotein lipase activity in the liver, which may have contributed to increased lipid droplets in the liver. CONCLUSION: Lack of hepatic leptin signaling results in increased lipid accumulation in the liver and larger, more triglyceride-rich VLDL particles. Collectively, these data reveal an interesting role for hepatic leptin signaling in modulating triglyceride metabolism.


Assuntos
Leptina/fisiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipase Lipoproteica/metabolismo , Fígado/efeitos dos fármacos , Animais , Apolipoproteínas B/sangue , Hepatócitos/metabolismo , Lipoproteínas VLDL , Fígado/metabolismo , Camundongos , Camundongos Obesos , Transdução de Sinais/efeitos dos fármacos , Triglicerídeos/metabolismo
16.
Arterioscler Thromb Vasc Biol ; 33(5): 894-902, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23471235

RESUMO

OBJECTIVE: After diabetes mellitus, transfer of lipoprotein lipase (LPL) from cardiomyocytes to the coronary lumen increases, and this requires liberation of LPL from the myocyte surface heparan sulfate proteoglycans with subsequent replenishment of this reservoir. At the lumen, LPL breaks down triglyceride to meet the increased demand of the heart for fatty acid. Here, we examined the contribution of coronary endothelial cells (ECs) toward regulation of cardiomyocyte LPL secretion. APPROACH AND RESULTS: Bovine coronary artery ECs were exposed to high glucose, and the conditioned medium was used to treat cardiomyocytes. EC-conditioned medium liberated LPL from the myocyte surface, in addition to facilitating its replenishment. This effect was attributed to the increased heparanase content in EC-conditioned medium. Of the 2 forms of heparanase secreted from EC in response to high glucose, active heparanase released LPL from the myocyte surface, whereas latent heparanase stimulated reloading of LPL from an intracellular pool via heparan sulfate proteoglycan-mediated RhoA activation. CONCLUSIONS: Endothelial heparanase is a participant in facilitating LPL increase at the coronary lumen. These observations provide an insight into the cross-talk between ECs and cardiomyocytes to regulate cardiac metabolism after diabetes mellitus.


Assuntos
Células Endoteliais/enzimologia , Glucuronidase/fisiologia , Lipase Lipoproteica/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Bovinos , Comunicação Celular , Células Cultivadas , Proteoglicanas de Heparan Sulfato/fisiologia , Masculino , Miocárdio/metabolismo , Proteína Quinase C-alfa/fisiologia , Ratos , Ratos Wistar , Proteína rhoA de Ligação ao GTP/fisiologia
17.
Arterioscler Thromb Vasc Biol ; 33(12): 2830-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24115032

RESUMO

OBJECTIVE: During diabetes mellitus, coronary lipoprotein lipase increases to promote the predominant use of fatty acids. We have reported that high glucose stimulates active heparanase secretion from endothelial cells to cleave cardiomyocyte heparan sulfate and release bound lipoprotein lipase for transfer to the vascular lumen. In the current study, we examined whether heparanase also has a function to release cardiomyocyte vascular endothelial growth factor (VEGF), and whether this growth factor influences cardiomyocyte fatty acid delivery in an autocrine manner. APPROACH AND RESULTS: Acute, reversible hyperglycemia was induced in rats, and a modified Langendorff heart perfusion was used to separate the coronary perfusate from the interstitial effluent. Coronary artery endothelial cells were exposed to high glucose to generate conditioned medium, and VEGF release from isolated cardiomyocytes was tested using endothelial cell conditioned medium or purified active and latent heparanase. Autocrine signaling of myocyte-derived VEGF on cardiac metabolism was studied. High glucose promoted latent and active heparanase secretion into endothelial cell conditioned medium, an effective stimulus for releasing cardiomyocyte VEGF. Intriguingly, latent heparanase was more efficient than active heparanase in releasing VEGF from a unique cell surface pool. VEGF augmented cardiomyocyte intracellular calcium and AMP-activated protein kinase phosphorylation and increased heparin-releasable lipoprotein lipase. CONCLUSIONS: Our data suggest that the heparanase-lipoprotein lipase-VEGF axis amplifies fatty acid delivery, a rapid and adaptive mechanism that is geared to overcome the loss of glucose consumption by the diabetic heart. If prolonged, the resultant lipotoxicity could lead to cardiovascular disease in humans.


Assuntos
Comunicação Autócrina , Vasos Coronários/enzimologia , Células Endoteliais/enzimologia , Glucuronidase/metabolismo , Hiperglicemia/enzimologia , Lipase Lipoproteica/metabolismo , Miócitos Cardíacos/enzimologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Glicemia/metabolismo , Cálcio/metabolismo , Meios de Cultivo Condicionados/metabolismo , Diazóxido , Modelos Animais de Doenças , Metabolismo Energético , Ativação Enzimática , Ácidos Graxos/metabolismo , Hiperglicemia/sangue , Hiperglicemia/induzido quimicamente , Fosforilação , Ratos , Transdução de Sinais , Fatores de Tempo
18.
Nat Med ; 13(3): 340-7, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17322896

RESUMO

Type 2 diabetes is characterized by both peripheral insulin resistance and reduced insulin secretion by beta-cells. The reasons for beta-cell dysfunction in this disease are incompletely understood but may include the accumulation of toxic lipids within this cell type. We examined the role of Abca1, a cellular cholesterol transporter, in cholesterol homeostasis and insulin secretion in beta-cells. Mice with specific inactivation of Abca1 in beta-cells had markedly impaired glucose tolerance and defective insulin secretion but normal insulin sensitivity. Islets isolated from these mice showed altered cholesterol homeostasis and impaired insulin secretion in vitro. We found that rosiglitazone, an activator of the peroxisome proliferator-activated receptor-gamma, which upregulates Abca1 in beta-cells, requires beta-cell Abca1 for its beneficial effects on glucose tolerance. These experiments establish a new role for Abca1 in beta-cell cholesterol homeostasis and insulin secretion, and suggest that cholesterol accumulation may contribute to beta-cell dysfunction in type 2 diabetes.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Glucose/metabolismo , Homeostase/fisiologia , Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Tiazolidinedionas/farmacologia , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/biossíntese , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Colesterol/metabolismo , Homeostase/efeitos dos fármacos , Secreção de Insulina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
19.
Diabetes ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771953

RESUMO

Although endothelial cells control smooth muscle tone in coronary vessels, these cells also influence subjacent cardiomyocyte growth. As heparanase, with exclusive expression in endothelial cells, enables extracellular matrix remodeling, angiogenesis, metabolic reprogramming, and cell survival, it is conceivable that it could also encourage development of cardiac hypertrophy. Global heparanase overexpression resulted in physiological cardiac hypertrophy, likely an outcome of HSPG clustering and activation of hypertrophic signaling. The autocrine effect of heparanase to release neuregulin-1 may have also contributed to this effect. Hyperglycemia induced by streptozotocin-diabetes sensitized the heart to flow-induced release of heparanase and neuregulin-1. Despite this excess secretion, progression of diabetes caused significant gene expression changes related to mitochondrial metabolism and cell death that led to development of pathological hypertrophy and heart dysfunction. Physiological cardiac hypertrophy was also observed in rats with cardiomyocyte-specific VEGFB overexpression. When perfused, hearts from these animals released significantly higher amounts of both heparanase and neuregulin-1. However, subjecting these animals to diabetes triggered robust transcriptome changes related to metabolism, and a transition to pathological hypertrophy. Our data suggest that in the absence of mechanisms that support cardiac energy generation and prevention of cell death, as seen following diabetes, there is a transition from physiological to pathological cardiac hypertrophy and a decline in cardiac function.

20.
JCI Insight ; 9(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973609

RESUMO

Lipoprotein lipase (LPL) hydrolyzes circulating triglycerides (TGs), releasing fatty acids (FA) and promoting lipid storage in white adipose tissue (WAT). However, the mechanisms regulating adipose LPL and its relationship with the development of hypertriglyceridemia are largely unknown. WAT from obese humans exhibited high PAR2 expression, which was inversely correlated with the LPL gene. Decreased LPL expression was also inversely correlated with elevated plasma TG levels, suggesting that adipose PAR2 might regulate hypertriglyceridemia by downregulating LPL. In mice, aging and high palmitic acid diet (PD) increased PAR2 expression in WAT, which was associated with a high level of macrophage migration inhibitory factor (MIF). MIF downregulated LPL expression and activity in adipocytes by binding with CXCR2/4 receptors and inhibiting Akt phosphorylation. In a MIF overexpression model, high-circulating MIF levels suppressed adipose LPL, and this suppression was associated with increased plasma TGs but not FA. Following PD feeding, adipose LPL expression and activity were significantly reduced, and this reduction was reversed in Par2-/- mice. Recombinant MIF infusion restored high plasma MIF levels in Par2-/- mice, and the levels decreased LPL and attenuated adipocyte lipid storage, leading to hypertriglyceridemia. These data collectively suggest that downregulation of adipose LPL by PAR2/MIF may contribute to the development of hypertriglyceridemia.


Assuntos
Regulação para Baixo , Hipertrigliceridemia , Lipase Lipoproteica , Receptor PAR-2 , Animais , Lipase Lipoproteica/metabolismo , Lipase Lipoproteica/genética , Hipertrigliceridemia/metabolismo , Hipertrigliceridemia/genética , Camundongos , Humanos , Receptor PAR-2/metabolismo , Receptor PAR-2/genética , Masculino , Camundongos Knockout , Triglicerídeos/metabolismo , Triglicerídeos/sangue , Tecido Adiposo Branco/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Fatores Inibidores da Migração de Macrófagos/genética , Adipócitos/metabolismo , Obesidade/metabolismo , Obesidade/genética , Ácido Palmítico/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA