Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Development ; 147(15)2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32665242

RESUMO

The colonial ascidian Botryllus schlosseri regenerates the germline during repeated cycles of asexual reproduction. Germline stem cells (GSCs) circulate in the blood and migrate to new germline niches as they develop and this homing process is directed by a Sphigosine-1-Phosphate (S1P) gradient. Here, we find that inhibition of ABC transporter activity reduces migration of GSCs towards low concentrations of S1P in vitro In addition, inhibiting phospholipase A2 (PLA2) or lipoxygenase (Lox) blocks chemotaxis towards low concentrations of S1P. These effects can be rescued by addition of the 12-Lox product 12-S-HETE. Blocking ABC transporter, PLA2 or 12-Lox activity also inhibits homing of germ cells in vivo Using a live-imaging chemotaxis assay in a 3D matrix, we show that a shallow gradient of 12-S-HETE enhances chemotaxis towards low concentrations of S1P and stimulates motility. A potential homolog of the human receptor for 12-S-HETE, gpr31, is expressed on GSCs and differentiating vasa+ germ cells. These results suggest that 12-S-HETE might be an autocrine signaling molecule exported by ABC transporters that enhances chemotaxis in GSCs migrating towards low concentrations of S1P.


Assuntos
Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Comunicação Autócrina , Quimiotaxia , Células Germinativas/metabolismo , Transdução de Sinais , Urocordados/metabolismo , Animais , Araquidonato 12-Lipoxigenase/metabolismo , Células Germinativas/citologia , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Urocordados/citologia
2.
J Exp Biol ; 226(24)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37929758

RESUMO

We demonstrate that the sessile tunicate Botryllus schlosseri is remarkably resilient to applied loads by attaching the animals to an extensile substrate subjected to quasistatic equiradial loads. Animals can withstand radial extension of the substrate to strain values as high as 20% before they spontaneously detach. In the small to moderate strain regime, we found no relationship between the dynamic size of the external vascular bed and the magnitude of applied stretch, despite known force sensitivities of the vascular tissue at the cellular level. We attribute this resilience to the presence and mechanical properties of the tunic, the cellulose-enriched gel-like substance that encases the animal bodies and surrounding vasculature.


Assuntos
Resiliência Psicológica , Urocordados , Animais , Urocordados/química
3.
Dev Biol ; 448(2): 309-319, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30760410

RESUMO

The extracorporeal vasculature of the colonial ascidian Botryllus schlosseri plays a key role in several biological processes: transporting blood, angiogenesis, regeneration, self-nonself recognition, and parabiosis. The vasculature also interconnects all individuals in a colony and is composed of a single layer of ectodermally-derived cells. These cells form a tube with the basal lamina facing the lumen, and the apical side facing an extracellular matrix that consists of cellulose and other proteins, known as the tunic. Vascular tissue is transparent and can cover several square centimeters, which is much larger than any single individual within the colony. It forms a network that ramifies and expands to the perimeter of each colony and terminates into oval-shaped protrusions known as ampullae. Botryllus individuals replace themselves through a weekly budding cycle, and vasculature is added to ensure the interconnection of each new individual, thus there is continuous angiogenesis occurring naturally. The vascular tissue itself is highly regenerative; surgical removal of the ampullae and peripheral vasculature triggers regrowth within 24-48 h, which includes forming new ampullae. When two individuals, whether in the wild or in the lab, come into close contact and their ampullae touch, they can either undergo parabiosis through anastomosing vessels, or reject vascular fusion. The vasculature is easily manipulated by direct means such as microinjections, microsurgeries, and pharmacological reagents. Its transparent nature allows for in vivo analysis by bright field and fluorescence microscopy. Here we review the techniques and approaches developed to study the different biological processes that involve the extracorporeal vasculature.


Assuntos
Vasos Sanguíneos/fisiologia , Urocordados/fisiologia , Animais , Neovascularização Fisiológica , Parabiose , Regeneração , Urocordados/citologia , Urocordados/embriologia
4.
Mol Reprod Dev ; 84(2): 158-170, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27228546

RESUMO

The colonial ascidian Botryllus schlosseri is an ideal model organism for studying gonad development and hermaphroditism. B. schlosseri has been reared in laboratories for over half a century, and its unique biology allows investigators to probe the processes of germ cell migration and gonad formation, resorption, and regeneration. Following metamorphosis, colonies of B. schlosseri show a synchronized and sequential fertility program that, under standard laboratory conditions, begins with a juvenile stage with no visible gonads and subsequently develops testes at 9 weeks followed later by the production of oocytes-thus resulting in hermaphroditic individuals. The timing of oocyte production varies according to the season, and adult B. schlosseri colonies can cycle among infertile and both male and hermaphrodite fertile states in response to changing environmental conditions. Thus, these acidians are amenable to studying the molecular mechanisms controlling fertility, and recent genomic and transcriptomic databases are providing insight to the key genes involved. Here, we review the techniques and approaches developed to study germ cell migration and gonad formation in B. schlosseri, and include novel videos showing processes related to oocyte ovulation and sperm discharge. In the future, this valuable invertebrate model system may help understand the mechanisms of gonad development and regeneration in a chordate. Mol. Reprod. Dev. 84: 158-170, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Organismos Hermafroditas/fisiologia , Metamorfose Biológica/fisiologia , Ovário/crescimento & desenvolvimento , Testículo/crescimento & desenvolvimento , Urocordados/fisiologia , Animais , Feminino , Fertilidade , Masculino , Testículo/fisiologia
5.
Genesis ; 53(1): 194-201, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25179474

RESUMO

Botryllus schlosseri is a colonial ascidian with characteristics that make it an attractive model for studying immunology, stem cell biology, evolutionary biology, and regeneration. Transcriptome sequencing and the recent completion of a draft genome sequence for B. schlosseri have revealed a large number of genes, both with and without vertebrate homologs, but analyzing the spatial and temporal expression of these genes in situ has remained a challenge. Here, we report a robust protocol for in situ hybridization that enables the simultaneous detection of multiple transcripts in whole adult B. schlosseri using Tyramide Signal Amplification in conjunction with digoxigenin- and dinitrophenol-labeled RNA probes. Using this protocol, we have identified a number of genes that can serve as markers for developing and mature structures in B. schlosseri, permitting analysis of phenotypes induced in loss-of-function experiments.


Assuntos
Hibridização in Situ Fluorescente/métodos , Urocordados/genética , Animais , Regulação da Expressão Gênica , Marcadores Genéticos , Sondas RNA/genética , RNA Antissenso/genética , Coloração e Rotulagem
6.
Immunogenetics ; 67(10): 605-23, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26359175

RESUMO

Botryllus schlosseri is a colonial ascidian with a natural ability to anastomose with another colony to form a vascular and hematopoietic chimera. In order to fuse, two individuals must share at least one allele at the highly polymorphic fuhc locus. Otherwise, a blood-based inflammatory response will occur resulting in a melanin scar at the sites of interaction. The single-locus genetic control of allorecognition makes B. schlosseri an attractive model to study the underlying molecular mechanisms. Over the past decade, several candidate genes involved in allorecognition have been identified, but how they ultimately contribute to allorecognition outcome remains poorly understood. Here, we report our initial molecular characterization of a recently identified candidate allodeterminant called Botryllus histocompatibility factor (bhf). bhf, both on a DNA and protein level, is the least polymorphic protein in the fuhc locus studied so far and, unlike other known allorecognition determinants, does not appear to be under any form of balancing or directional selection. Additionally, we identified a second isoform through mRNA-Seq and an EST assembly library which is missing exon 3, resulting in a C-terminally truncated form. We report via whole-mount fluorescent in situ hybridization that a subset of cells co-express bhf and cfuhc(sec). Finally, we observed BHF's localization in HEK293T at the cytoplasmic side of the plasma membrane in addition to the nucleus via a nuclear localization signal. Given the localization data thus far, we hypothesize that BHF may function as a scaffolding protein in a complex with other Botryllus proteins, rather than functioning as an allorecognition determinant.


Assuntos
Evolução Molecular , Complexo Principal de Histocompatibilidade/genética , Urocordados/genética , Urocordados/imunologia , Alelos , Sequência de Aminoácidos , Animais , Western Blotting , Perfilação da Expressão Gênica , Variação Genética , Células HEK293 , Haplótipos , Humanos , Hibridização in Situ Fluorescente , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Dados de Sequência Molecular , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Vermelha Fluorescente
7.
Invertebr Reprod Dev ; 59(sup1): 45-50, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-26136620

RESUMO

What mechanisms underlie aging? One theory, the wear-and-tear model, attributes aging to progressive deterioration in the molecular and cellular machinery which eventually lead to death through the disruption of physiological homeostasis. The second suggests that life span is genetically programmed, and aging may be derived from intrinsic processes which enforce a non-random, terminal time interval for the survivability of the organism. We are studying an organism that demonstrates both properties: the colonial ascidian, Botryllus schlosseri. Botryllus is a member of the Tunicata, the sister group to the vertebrates, and has a number of life history traits which make it an excellent model for studies on aging. First, Botryllus has a colonial life history, and grows by a process of asexual reproduction during which entire bodies, including all somatic and germline lineages, regenerate every week, resulting in a colony of genetically identical individuals. Second, previous studies of lifespan in genetically distinct Botryllus lineages suggest that a direct, heritable basis underlying mortality exists that is unlinked to reproductive effort and other life history traits. Here we will review recent efforts to take advantage of the unique life history traits of B. schlosseri and develop it into a robust model for aging research.

8.
BMC Genomics ; 15: 1183, 2014 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-25542255

RESUMO

BACKGROUND: Gonad differentiation is an essential function for all sexually reproducing species, and many aspects of these developmental processes are highly conserved among the metazoa. The colonial ascidian, Botryllus schlosseri is a chordate model organism which offers two unique traits that can be utilized to characterize the genes underlying germline development: a colonial life history and variable fertility. These properties allow individual genotypes to be isolated at different stages of fertility and gene expression can be characterized comprehensively. RESULTS: Here we characterized the transcriptome of both fertile and infertile colonies throughout blastogenesis (asexual development) using differential expression analysis. We identified genes (as few as 7 and as many as 647) regulating fertility in Botryllus at each stage of blastogenesis. Several of these genes appear to drive gonad maturation, as they are expressed by follicle cells surrounding both testis and oocyte precursors. Spatial and temporal expression of differentially expressed genes was analyzed by in situ hybridization, confirming expression in developing gonads. CONCLUSION: We have identified several genes expressed in developing and mature gonads in B. schlosseri. Analysis of genes upregulated in fertile animals suggests a high level of conservation of the mechanisms regulating fertility between basal chordates and vertebrates.


Assuntos
Fertilidade/genética , Urocordados/genética , Urocordados/fisiologia , Animais , Feminino , Humanos , Infertilidade/genética , Masculino , Ovário/metabolismo , Ovário/fisiologia , Ovário/fisiopatologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Testículo/metabolismo , Testículo/fisiologia , Testículo/fisiopatologia
9.
bioRxiv ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38405917

RESUMO

Histocompatibility is the ability to discriminate between self and non-self tissues, and has been described in species throughout the metazoa. Despite its universal presence, histocompatibility genes utilized by different phyla are unique- those found in sponges, cnidarians, ascidians and vertebrates are not orthologous. Thus, the origins of these sophisticated recognition systems, and any potential functional commonalities between them are not understood. A well-studied histocompatibility system exists in the botryllid ascidians, members of the chordate subphylum, Tunicata, and provides an opportunity to do so. Histocompatibility in the botryllids occurs at the tips of an extracorporeal vasculature that come into contact when two individuals grow into proximity. If compatible, the vessels will fuse, forming a parabiosis between the two individuals. If incompatible, the two vessels will reject- an inflammatory reaction that results in melanin scar formation at the point of contact, blocking anastomosis. Compatibility is determined by a single, highly polymorphic locus called the fuhc with the following rules: individuals that share one or both fuhc alleles will fuse, while those who share neither will reject. The fuhc locus encodes multiple proteins with roles in allorecognition, including one called uncle fester, which is necessary and sufficient to initiate the rejection response. Here we report the existence of genotype-specific expression levels of uncle fester, differing by up to 8-fold at the mRNA-level, and that these expression levels are constant and maintained for the lifetime of an individual. We also found that these differences had functional consequences: the expression level of uncle fester correlated with the speed and severity of the rejection response. These findings support previous conclusions that uncle fester levels modulate the rejection response, and may be responsible for controlling the variation observed in the timing and intensity of the reaction. The maintenance of genotype specific expression of uncle fester is also evidence of an education process reminiscent of that which occurs in mammalian Natural Killer (NK) cells. In turn, this suggests that while histocompatibility receptors and ligands evolve via convergent evolution, they may utilize conserved intracellular machinery to interpret binding events at the cell surface.

10.
Res Sq ; 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37986947

RESUMO

Biomarkers of biological age that predict the risk of disease and expected lifespan better than chronological age are key to efficient and cost-effective healthcare1-3. To advance a personalized approach to healthcare, such biomarkers must reliably and accurately capture individual biology, predict biological age, and provide scalable and cost-effective measurements. We developed a novel approach - image-based chromatin and epigenetic age (ImAge) that captures intrinsic progressions of biological age, which readily emerge as principal changes in the spatial organization of chromatin and epigenetic marks in single nuclei without regression on chronological age. ImAge captured the expected acceleration or deceleration of biological age in mice treated with chemotherapy or following a caloric restriction regimen, respectively. ImAge from chronologically identical mice inversely correlated with their locomotor activity (greater activity for younger ImAge), consistent with the widely accepted role of locomotion as an aging biomarker across species. Finally, we demonstrated that ImAge is reduced following transient expression of OSKM cassette in the liver and skeletal muscles and reveals heterogeneity of in vivo reprogramming. We propose that ImAge represents the first-in-class imaging-based biomarker of aging with single-cell resolution.

11.
J Am Chem Soc ; 133(17): 6780-90, 2011 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-21473622

RESUMO

A new class of fluorescent triazaborolopyridinium compounds was synthesized from hydrazones of 2-hydrazinylpyridine (HPY) and evaluated as potential dyes for live-cell imaging applications. The HPY dyes are small, their absorption/emission properties are tunable through variation of pyridyl or hydrazone substituents, and they offer favorable photophysical characteristics featuring large Stokes shifts and general insensitivity to solvent or pH. The stability, neutral charge, cell membrane permeability, and favorable relative influences on the water solubility of HPY conjugates are complementary to existing fluorescent dyes and offer advantages for the development of receptor-targeted small-molecule probes. This potential was assessed through the development of a new class of cysteine-derived HPY-conjugate imaging agents for the kinesin spindle protein (KSP) that is expressed in the cytoplasm during mitosis and is a promising chemotherapeutic target. Conjugates possessing the neutral HPY or charged Alexa Fluor dyes that function as potent, selective allosteric inhibitors of the KSP motor were compared using biochemical and cell-based phenotypic assays and live-cell imaging. These results demonstrate the effectiveness of the HPY dye moiety as a component of probes for an intracellular protein target and highlight the importance of dye structure in determining the pathway of cell entry and the overall performance of small-molecule conjugates as imaging agents.


Assuntos
Membrana Celular/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Compostos de Piridínio/química , Compostos de Piridínio/metabolismo , Permeabilidade da Membrana Celular , Corantes Fluorescentes/síntese química , Células HeLa , Humanos , Compostos de Piridínio/síntese química , Piridonas/síntese química , Piridonas/química
12.
Bioorg Med Chem ; 19(18): 5446-53, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21855351

RESUMO

Assembly of a bipolar mitotic spindle requires the action of class 5 kinesins, and inhibition or depletion of this motor results in mitotic arrest and apoptosis. S-Trityl-l-cysteine is an allosteric inhibitor of vertebrate Kinesin Spindle Protein (KSP) that has generated considerable interest due to its anti-cancer properties, however, poor pharmacological properties have limited the use of this compound. We have modified the triphenylmethyl and cysteine groups, guided by biochemical and cell-based assays, to yield new cysteinol and cysteamine derivatives with increased inhibitory activity, greater efficacy in model systems, and significantly enhanced potency against the NCI60 tumor panel. These results reveal a promising new class of conformationally-flexible small molecules as allosteric KSP inhibitors for use as research tools, with activities that provide impetus for further development as anti-tumor agents.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Cisteamina/análogos & derivados , Cinesinas/antagonistas & inibidores , Compostos de Tritil/farmacologia , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cisteamina/síntese química , Cisteamina/química , Cisteamina/farmacologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Embrião não Mamífero/efeitos dos fármacos , Células HeLa , Humanos , Modelos Moleculares , Estrutura Molecular , Ouriços-do-Mar/efeitos dos fármacos , Ouriços-do-Mar/embriologia , Estereoisomerismo , Relação Estrutura-Atividade , Compostos de Tritil/síntese química , Compostos de Tritil/química
13.
Evodevo ; 12(1): 15, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911568

RESUMO

BACKGROUND: Botryllid ascidians are a group of marine invertebrate chordates that are colonial and grow by repeated rounds of asexual reproduction to form a colony of individual bodies, called zooids, linked by a common vascular network. Two distinct processes are responsible for zooid regeneration. In the first, called blastogenesis, new zooids arise from a region of multipotent epithelium from a pre-existing zooid. In the second, called whole body regeneration (WBR), mobile cells in the vasculature coalesce and are the source of the new zooid. In some botryllid species, blastogenesis and WBR occur concurrently, while in others, blastogenesis is used exclusively for growth, while WBR only occurs following injury or exiting periods of dormancy. In species such as Botrylloides diegensis, injury induced WBR is triggered by the surgical isolation of a small piece of vasculature. However, Botryllus schlosseri has unique requirements that must be met for successful injury induced WBR. Our goal was to understand why there would be different requirements between these two species. RESULTS: While WBR in B. diegensis was robust, we found that in B. schlosseri, new zooid growth following injury is unlikely due to circulatory cells, but instead a result of ectopic development of tissues leftover from the blastogenic process. These tissues could be whole, damaged, or partially resorbed developing zooids, and we defined the minimal amount of vascular biomass to support ectopic regeneration. We did find a common theme between the two species: a competitive process exists which results in only a single zooid reaching maturity following injury. We utilized this phenomenon and found that competition is reversible and mediated by circulating factors and/or cells. CONCLUSIONS: We propose that WBR does not occur in B. schlosseri and that the unique requirements defined in other studies only serve to increase the chances of ectopic development. This is likely a response to injury as we have discovered a vascular-based reversible competitive mechanism which ensures that only a single zooid completes development. This competition has been described in other species, but the unique response of B. schlosseri to injury provides a new model to study resource allocation and competition within an individual.

14.
Front Mol Biosci ; 8: 626827, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33898513

RESUMO

Vascular diseases affect over 1 billion people worldwide and are highly prevalent among the elderly, due to a progressive deterioration of the structure of vascular cells. Most of our understanding of these age-related cellular changes comes from in vitro studies on human cell lines. Further studies of the mechanisms underlying vascular aging in vivo are needed to provide insight into the pathobiology of age-associated vascular diseases, but are difficult to carry out on vertebrate model organisms. We are studying the effects of aging on the vasculature of the invertebrate chordate, Botryllus schlosseri. This extracorporeal vascular network of Botryllus is transparent and particularly amenable to imaging and manipulation. Here we use a combination of transcriptomics, immunostaining and live-imaging, as well as in vivo pharmacological treatments and regeneration assays to show that morphological, transcriptional, and functional age-associated changes within vascular cells are key hallmarks of aging in B. schlosseri, and occur independent of genotype. We show that age-associated changes in the cytoskeleton and the extracellular matrix reshape vascular cells into a flattened and elongated form and there are major changes in the structure of the basement membrane over time. The vessels narrow, reducing blood flow, and become less responsive to stimuli inducing vascular regression. The extracorporeal vasculature is highly regenerative following injury, and while age does not affect the regeneration potential, newly regenerated vascular cells maintain the same aged phenotype, suggesting that aging of the vasculature is a result of heritable epigenetic changes.

15.
Mol Biol Cell ; 31(16): 1714-1725, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32614644

RESUMO

Epithelial tubules form critical structures in lung, kidney, and vascular tissues. However, the processes that control their morphogenesis and physiological expansion and contraction are not well understood. Here we examine the dynamic remodeling of epithelial tubes in vivo using a novel model system: the extracorporeal vasculature of Botryllus schlosseri, in which the disruption of the basement membrane triggers rapid, massive vascular retraction without loss of barrier function. We developed and implemented 3-D image analysis and virtual reconstruction tools to characterize the cellular morphology of the vascular wall in unmanipulated vessels and during retraction. In both control and regressed conditions, cells within the vascular wall were planar polarized, with an integrin- and curvature-dependent axial elongation of cells and a robust circumferential alignment of actin bundles. Surprisingly, we found no measurable differences in morphology between normal and retracting vessels under extracellular matrix (ECM) disruption. However, inhibition of integrin signaling through focal adhesion kinase inhibition caused disruption of cellular actin organization. Our results demonstrate that epithelial tubes can maintain tissue organization even during extreme remodeling events, but that the robust response to mechanical signals-such as the response to loss of vascular tension after ECM disruption-requires functional force sensing machinery via integrin signaling.


Assuntos
Células Epiteliais/metabolismo , Imageamento Tridimensional/métodos , Remodelação Vascular/fisiologia , Actinas/metabolismo , Animais , Membrana Basal/metabolismo , Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Integrinas/fisiologia , Fenômenos Mecânicos , Mecanotransdução Celular/fisiologia , Morfogênese , Transdução de Sinais , Urocordados/metabolismo
16.
Mol Biol Cell ; 28(14): 1883-1893, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28615322

RESUMO

We investigated the physical role of the extracellular matrix (ECM) in vascular homeostasis in the basal chordate Botryllus schlosseri, which has a large, transparent, extracorporeal vascular network encompassing an area >100 cm2 We found that the collagen cross-linking enzyme lysyl oxidase is expressed in all vascular cells and that in vivo inhibition using ß-aminopropionitrile (BAPN) caused a rapid, global regression of the entire network, with some vessels regressing >10 mm within 16 h. BAPN treatment changed the ultrastructure of collagen fibers in the vessel basement membrane, and the kinetics of regression were dose dependent. Pharmacological inhibition of both focal adhesion kinase (FAK) and Raf also induced regression, and levels of phosphorylated FAK in vascular cells decreased during BAPN treatment and FAK inhibition but not Raf inhibition, suggesting that physical changes in the vessel ECM are detected via canonical integrin signaling pathways. Regression is driven by apoptosis and extrusion of cells through the basal lamina, which are then engulfed by blood-borne phagocytes. Extrusion and regression occurred in a coordinated manner that maintained vessel integrity, with no loss of barrier function. This suggests the presence of regulatory mechanisms linking physical changes to a homeostatic, tissue-level response.


Assuntos
Colágeno/fisiologia , Matriz Extracelular/metabolismo , Aminopropionitrilo , Animais , Cordados , Colágeno/metabolismo , Colágeno/ultraestrutura , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Fosforilação , Proteína-Lisina 6-Oxidase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinases raf
17.
Curr Opin Genet Dev ; 39: 101-106, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27379900

RESUMO

Colonial ascidians are marine invertebrate chordates that are the closest invertebrate relative to the vertebrates. Colonies of Botryllus schlosseri undergo a continuous asexual reproduction process that involves the regeneration of entire new bodies, which include all somatic and germline tissues. This adult regenerative process depends on signaling pathways known to regulate the formation of tissues and organs during embryonic development. The formation of gonads within regenerated bodies depends on migration and homing of germ cell precursors to niches within the developing bodies, and Botryllus colonies can cycle between fertile and infertile states. The vasculature that connects all individuals within the colony is highly regenerative, and is a valuable tool for the study of angiogenesis in adult blood vessels. The tremendous regenerative capacity of the vasculature even results in regeneration of entire new bodies solely from fragments of blood vessels upon surgical removal of all bodies. The mechanism underlying this regeneration of whole bodies is not well understood, but appears to depend on proliferation of circulating, blood borne cells. Because of all of these features, colonial ascidians are ideal model organisms for the study of germ cell migration, fertility, vascular biology and regeneration.


Assuntos
Fertilidade/genética , Morfogênese/genética , Regeneração/genética , Urocordados/genética , Animais , Vasos Sanguíneos/crescimento & desenvolvimento , Células Germinativas/crescimento & desenvolvimento , Neovascularização Fisiológica/genética , Transdução de Sinais , Urocordados/crescimento & desenvolvimento , Vertebrados/genética , Vertebrados/crescimento & desenvolvimento
18.
Nat Commun ; 6: 8565, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26456232

RESUMO

The colonial ascidian Botryllus schlosseri continuously regenerates entire bodies in an asexual budding process. The germ line of the newly developing bodies is derived from migrating germ cell precursors, but the signals governing this homing process are unknown. Here we show that germ cell precursors can be prospectively isolated based on expression of aldehyde dehydrogenase and integrin alpha-6, and that these cells express germ cell markers such as vasa, pumilio and piwi, as well as sphingosine-1-phosphate receptor. In vitro, sphingosine-1-phosphate (S1P) stimulates migration of germ cells, which depends on integrin alpha-6 activity. In vivo, S1P signalling is essential for homing of germ cells to newly developing bodies. S1P is generated by sphingosine kinase in the developing germ cell niche and degraded by lipid phosphate phosphatase in somatic tissues. These results demonstrate a previously unknown role of the S1P signalling pathway in germ cell migration in the ascidian Botryllus schlosseri.


Assuntos
Células-Tronco Adultas/fisiologia , Lisofosfolipídeos/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Urocordados/metabolismo , Aldeído Desidrogenase/análise , Animais , Movimento Celular , Integrina alfa6/análise , Esfingosina/metabolismo
19.
FEBS Lett ; 541(1-3): 69-74, 2003 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-12706821

RESUMO

Capacitative Ca(2+) entry is a process whereby the activation of Ca(2+) influx through the plasma membrane is triggered by depletion of intracellular Ca(2+) stores. Some transient receptor potential (TRPC) proteins have been proposed as candidates for capacitative Ca(2+) channels. Recent evidence indicates that capacitative Ca(2+) entry participates in the sperm acrosome reaction (AR), an exocytotic process necessary for fertilization. In addition, several TRPCs have been detected heterogeneously distributed in mouse sperm, suggesting that they may participate in other functions such as motility. Using reverse transcription-polymerase chain reaction (RT-PCR) analysis, RNA messengers for TRPC1, 3, 6 and 7 were found in human spermatogenic cells. Confocal indirect immunofluorescence revealed the presence of TRPC1, 3, 4 and 6 differentially localized in the human sperm, and immunogold transmission electron microscopy indicated that TRPC epitopes are mostly associated to the surface of the cells. Because all of them were detected in the flagellum, TRPC channel antagonists were tested in sperm motility using a computer-assisted assay. Our results provide what is to our knowledge the first evidence that these channels may influence human sperm motility.


Assuntos
Canais de Cálcio/análise , Canais de Cálcio/fisiologia , Motilidade dos Espermatozoides , Espermatozoides/química , Espermatozoides/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Imuno-Histoquímica , Masculino , RNA Mensageiro/biossíntese , Espermatozoides/ultraestrutura , Canais de Cátion TRPC
20.
FEBS Lett ; 563(1-3): 87-92, 2004 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-15063728

RESUMO

Numerous sperm functions including the acrosome reaction (AR) are associated with Ca(2+) influx through voltage-gated Ca(2+) (Ca(V)) channels. Although the electrophysiological characterization of Ca(2+) currents in mature sperm has proven difficult, functional studies have revealed the presence of low-threshold (Ca(V)3) channels in spermatogenic cells. However, the molecular identity of these proteins remains undefined. Here, we identified by reverse transcription polymerase chain reaction the expression of Ca(V)3.3 mRNA in mouse male germ cells, an isoform not previously described in these cells. Immunoconfocal microscopy revealed the presence of the three Ca(V)3 channel isoforms in mouse spermatogenic cells. In mature mouse sperm only Ca(V)3.1 and Ca(V)3.2 were detected in the head, suggesting its participation in the AR. Ca(V)3.1 and Ca(V)3.3 were found in the principal and the midpiece of the flagella. All Ca(V)3 channels are also present in human sperm, but only to a minor extent in the head. These findings were corroborated by immunogold transmission electron microscopy. Tail localization of Ca(V)3 channels suggested they may participate in motility, however, mibefradil and gossypol concentrations that inhibit Ca(V)3 channels did not significantly affect human sperm motility. Only higher mibefradil doses that can block high-threshold (HVA) Ca(V) channels caused small but significant motility alterations. Antibodies to HVA channels detected Ca(V)1.3 and Ca(V)2.3 in human sperm flagella.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Células Germinativas/metabolismo , Espermatozoides/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/efeitos dos fármacos , Canais de Cálcio Tipo T/genética , Linhagem Celular , Células Cultivadas , Relação Dose-Resposta a Droga , Técnica Indireta de Fluorescência para Anticorpo , Células Germinativas/efeitos dos fármacos , Células Germinativas/ultraestrutura , Humanos , Ativação do Canal Iônico/fisiologia , Masculino , Mibefradil/farmacologia , Camundongos , Camundongos Endogâmicos , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Espermatozoides/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA