Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
NPJ Aging ; 10(1): 47, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39438481

RESUMO

Age-related changes in oligodendrocyte precursor cells (OPCs) contribute to white matter dysfunction. In aged mice, we hypothesized that myelin-dense fimbria OPCs possess niche-specific properties, compared to hippocampal OPCs. Aged fimbria OPCs were fewer, larger, and localized to neighboring microglia. We identified age-increased p16/Cdkn2a-expressing OPCs enriched for senescence-related pathways and distinct senescence signatures between hippocampus and fimbria. Aged brain OPC populations differ in microenvironment properties and responses to senescence-directed intervention.

2.
Res Sq ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37961365

RESUMO

Brain white matter tracts undergo structural and functional changes linked to late-life cognitive decline, but the cellular and molecular contributions to their selective vulnerability are not well defined. In naturally aged mice, we demonstrate that senescent and disease-associated microglia (DAM) phenotypes converge in hippocampus-adjacent white matter. Through gold-standard gene expression and immunolabeling combined with high-dimensional spatial mapping, we identified microglial cell fates in aged white matter characterized by aberrant morphology, microenvironment reorganization, and expression of senescence and DAM markers, including galectin 3 (GAL3/Lgals3), B-cell lymphoma 2 (Bcl2), and cyclin dependent kinase inhibitors, including Cdkn2a/p16ink4a. Pharmacogenetic or pharmacological targeting of p16ink4a or BCL2 reduced white matter GAL3+ DAM abundance and rejuvenated microglial fimbria organization. Our results demonstrate dynamic changes in microglial identity in aged white matter that can be reverted by senotherapeutic intervention to promote homeostatic maintenance in the aged brain.

3.
Front Aging ; 3: 993658, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276605

RESUMO

Surgical parabiosis enables sharing of the circulating milieu between two organisms. This powerful model presents diverse complications based on age, strain, sex, and other experimental parameters. Here, we provide an optimized parabiosis protocol for the surgical union of two mice internally at the elbow and knee joints with continuous external joining of the skin. This protocol incorporates guidance and solutions to complications that can occur, particularly in aging studies, including non-cohesive pairing, variable anesthesia sensitivity, external and internal dehiscence, dehydration, and weight loss. We also offer a straightforward method for validating postoperative blood chimerism and confirming its time course using flow cytometry. Utilization of our optimized protocol can facilitate reproducible parabiosis experimentation to dynamically explore mechanisms of aging and rejuvenation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA