RESUMO
Diabetes mellitus (DM) affects the wound healing process, resulting in impaired healing or aberrant scarring. DM increases reactive oxygen species (ROS) production, fibroblast senescence and angiogenesis abnormalities, causing exacerbated inflammation accompanied by low levels of TGF-ß and an increase in Matrix metalloproteinases (MMPs). Propolis has been proposed as a healing alternative for diabetic patients because it has antimicrobial, anti-inflammatory, antioxidant and proliferative effects and important properties in the healing process. An ethanolic extract of Chihuahua propolis (ChEEP) was obtained and fractionated, and the fractions were subjected to High-Performance Liquid Chromatography with diode-array (HPLC-DAD), High-Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS) and Gas Chromatography-Mass Spectrometry (GC-MS) analyses and 46 compounds were detected. Deep wounds were made in a murine DM model induced by streptozotocin, and the speed of closure and the wound tensile strength were evaluated by the tensiometric method, which showed that ChEEP had similar activity to Recoveron, improving the speed of healing and increasing the wound tensile strength needed to open the wound again. A histological analysis of the wounds was performed using H&E staining, and when Matrix metalloproteinase 9 (MMP9) and α-actin were quantified by immunohistochemistry, ChEEP was shown to be associated with improved histological healing, as indicated by the reduced MMP9 and α-actin expression. In conclusion, topical ChEEP application enhances wound healing in diabetic mice.
Assuntos
Diabetes Mellitus Experimental , Própole , Humanos , Camundongos , Animais , Própole/farmacologia , Própole/uso terapêutico , Metaloproteinase 9 da Matriz/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Modelos Animais de Doenças , Actinas , CicatrizaçãoRESUMO
BACKGROUND: This research evaluated the anti-Candida albicans effect of Mexican propolis from Chihuahua. Chemical composition of the ethanolic extract of propolis was determined by GC-MS, HPLC-DAD, and HPLC-MS. The presence of anthraquinone, aromatic acid, fatty acids, flavonoids, and carbohydrates was revealed. RESULTS: The anti-Candida activity of propolis was determined. The inhibitions halos were between 10.0 to 11.8 mm; 25% minimum inhibitory concentration (0.5 mg/ml) was fungistatic, and 50% minimum inhibitory concentration (1.0 mg/ml) was fungicidal. The effect of propolis on the capability of C. albicans to change its morphology was evaluated. 25% minimum inhibitory concentration inhibited to 50% of germ tube formation. Staining with calcofluor-white and propidium iodide was performed, showing that the propolis affected the integrity of the cell membrane. INT1 gene expression was evaluated by qRT-PCR. Propolis significantly inhibited the expression of the INT1 gene encodes an adhesin (Int1p). Chihuahua propolis extract inhibited the proliferation of Candida albicans, the development of the germ tube, and the synthesis of adhesin INT1. CONCLUSIONS: Given the properties demonstrated for Chihuahua propolis, we propose that it is a candidate to be considered as an ideal antifungal agent to help treat this infection since it would not have the toxic effects of conventional antifungals.
Assuntos
Candida albicans , Própole , Própole/farmacologia , Própole/química , Fatores de Virulência , México , Antifúngicos/farmacologia , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Proliferação de CélulasRESUMO
Essential oils are composed of terpenes, some of which have properties related to healing. Bursera schlechtendalii essential oil (BSEO) is used to heal superficial wounds. However, there have been no studies verifying this property. The objectives of this study were to evaluate the healing activity of BSEO in a murine model and to propose the roles of its chemical components in this process. Healing activity was evaluated by an incision model, histological analysis was performed, and tensile strength and antibacterial activity were measured. The chemical composition of BSEO was determined by gas chromatography coupled with mass spectrometry (GC-MS), and the mechanisms of action of each chemical component during the phases of the healing process were proposed. In addition, acute dermal toxicity was evaluated. BSEO showed better wound closure at the macroscopic, histological, and tensile strength levels compared to controls and had an antibacterial effect. The major compound in BSEO was α-phellandrene. However, most of the monoterpenes identified in BSEO were in agreement with information found in the literature, so the possibility of synergy between the chemical components and their different targets in the healing process was schematically proposed. BSEO was shown to be safe in the dermal toxicity evaluation.
Assuntos
Bursera , Óleos Voláteis , Camundongos , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Bursera/química , Terpenos/farmacologia , Cicatrização , Monoterpenos/farmacologia , Monoterpenos/química , Antibacterianos/farmacologiaRESUMO
Skin wound healing is a complex biochemical process of tissue repair and remodeling in response to injury. Currently, the drugs used to improve the healing process are inaccessible to the population, are costly, and have side effects, making the search for new treatment alternatives necessary. Propolis is a natural product produced by bees that is widely recognized and used in folk medicine for its multiple biomedical activities. However, therapeutic information regarding Mexican propolis is limited. This study aimed to evaluate the wound-healing effect of the Chihuahua ethanolic extract of propolis (ChEEP). Macroscopic and histological analyses were performed using a mouse wound-healing model. The topic acute toxicity assay showed that propolis at 10% w/v had no toxic effects. ChEEP has antibacterial activity against the Gram-positive bacteria Staphylococcus aureus and Staphylococcus epidermidis. Moreover, it exhibited good anti-inflammatory activity evaluated through mouse ear edema induced by 12-O-tetradeca-noylphorbol-13-acetate (TPA). A full-thickness incision lesion was created in mice and treated topically with 10% ChEEP. At Day 14 post-treatment, it was observed that propolis increased wound contraction and reduced healing time and wound length; furthermore, propolis increased the tensile strength of the wound, as determined with the tensiometric method, and promoted the formation of type I collagen at the site of injury, as evaluated with Herovici stain. These findings suggest that the topical administration of ChEEP can improve skin wound healing, probably due to the synergistic effect of its components, mainly polyphenols, in different steps of the wound-healing process. It should be noted this is the first time that the wound-healing activity of a Mexican propolis has been evaluated.
Assuntos
Própole , Animais , Própole/farmacologia , Própole/uso terapêutico , Cicatrização , Antibacterianos/uso terapêutico , Modelos Animais de Doenças , Etanol/farmacologia , Anti-Inflamatórios/farmacologiaRESUMO
Essential oils (EOs) are complex mixtures of volatile natural compounds. We have extensively studied the EO of Bursera morelensis, which demonstrates antibacterial, antifungal, anti-inflammatory, and wound-healing activities. The objective of this work was to determine the effect of this EO on fibroblast migration in a three-dimensional in vitro model. For the three-dimensional in vitro model, a series of fibrin hydrogel scaffolds (FSs) were built in which fibroblasts were cultured and subsequently stimulated with fibroblast growth factor (FGF) or EO. The results demonstrated that these FSs are appropriate for fibroblast culture, since no decrease in cell viability or changes in cell proliferation were found. The results also showed that this EO promotes cell migration four hours after stimulation, and the formation of cell projections (filopodia) outside the SF was observed. From these results, we confirmed that part of the mechanism of action of the essential oil of B. morelensis during the healing process is the stimulation of fibroblast migration to the wound site.
Assuntos
Bursera , Óleos Voláteis , Óleos Voláteis/farmacologia , Projetos de Pesquisa , Movimento Celular , Fatores de Crescimento de Fibroblastos , FibroblastosRESUMO
Mangifera indica can generate up to 60% of polluting by-products, including peels. However, it has been shown that flavonoids and mangiferin are mainly responsible for the antioxidant, anti-inflammatory, and antibacterial activities closely related to the wound-healing process. The chemical composition of MEMI (methanolic extract of M. indica) was analyzed by HPLC-DAD, as well as concentrations of total phenol (TPC) and flavonoids (TFC) and antioxidant activity (SA50). Wound-healing efficacy was determined by measurements of wound contraction, histological analysis, and tensiometric method; moreover, anti-inflammatory, antibacterial, and acute dermal toxicity (OECD 402) were also evaluated. Phenol, resorcinol, conjugated resorcinol, and mangiferin were detected. TPC, TFC, and SA50 were 136 mg GAE/g, 101.66 mg QE/g, and 36.33 µg/mL, respectively. Tensile strength and wound contraction closure did not show significant differences between MEMI and dexpanthenol groups. Histological analysis (after 14 days) shows a similar architecture between MEMI treatment and normal skin. MEMI exhibits a reduction in edema. Staphylococcus epidermidis had an MIC of 2 mg/mL, while Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli reached 4 mg/mL. The MEMI showed no signs of toxicity. Therefore, this study demonstrates multiple targets that flavonoids and mangiferin of MEMI may present during the healing process.
Assuntos
Mangifera/química , Extratos Vegetais , Cicatrização/efeitos dos fármacos , Ferimentos e Lesões , Animais , Modelos Animais de Doenças , Flavonoides/química , Flavonoides/farmacologia , Masculino , Camundongos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ferimentos e Lesões/tratamento farmacológico , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/microbiologia , Xantonas/química , Xantonas/farmacologiaRESUMO
Bursera morelensis is used in Mexican folk medicine to treat wounds on the skin. Recently, it was shown that the essential oil (EO) of B. morelensis has wound healing activity, accelerating cutaneous wound closure and generating scars with good tensile strength. α-pinene (PIN) and α-phellandrene (FEL) are terpenes that have been found in this EO, and it has been shown in different studies that both have anti-inflammatory activity. The aim of this study was to determine the wound healing activity of these two terpenes. The results of in vitro tests demonstrate that PIN and FEL are not cytotoxic at low concentrations and that they do not stimulate fibroblast cell proliferation. In vivo tests showed that the terpenes produce stress-resistant scars and accelerate wound contraction, due to collagen deposition from the early stages, in wounds treated with both terpenes. Therefore, we conclude that both α-pinene and α-phellandrene promote the healing process; this confirms the healing activity of the EO of B. morelensis, since having these terpenes as part of its chemical composition explains part of its demonstrated activity.
Assuntos
Monoterpenos Bicíclicos/farmacologia , Monoterpenos Cicloexânicos/farmacologia , Extratos Vegetais/farmacologia , Cicatrização/efeitos dos fármacos , Monoterpenos Bicíclicos/química , Bursera/química , Monoterpenos Cicloexânicos/química , Humanos , México , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Extratos Vegetais/química , Pele/química , Terpenos/química , Terpenos/farmacologiaRESUMO
Bursera morelensis is used in Mexican folk medicine to treat wounds on the skin. It is an endemic tree known as "aceitillo", and the antibacterial and antifungal activity of its essential oil has been verified; it also acts as an anti-inflammatory. All of these reported biological activities make the essential oil of B. morelensis a candidate to accelerate the wound-healing process. The objective was to determine the wound-healing properties of B. morelensis' essential oil on a murine model. The essential oil was obtained by hydro-distillation, and the chemical analysis was performed by gas chromatography-mass spectrometry (GC-MS). In the murine model, wound-healing efficacy (WHE) and wound contraction (WC) were evaluated. Cytotoxic activity was evaluated in vitro using peritoneal macrophages from BALB/c mice. The results showed that 18 terpenoid-type compounds were identified in the essential oil. The essential oil had remarkable WHE regardless of the dose and accelerated WC and was not cytotoxic. In vitro tests with fibroblasts showed that cell viability was dose-dependent; by adding 1 mg/mL of essential oil (EO) to the culture medium, cell viability decreased below 80%, while, at doses of 0.1 and 0.01 mg/mL, it remained around 90%; thus, EO did not intervene in fibroblast proliferation, but it did influence fibroblast migration when wound-like was done in monolayer cultures. The results of this study demonstrated that the essential oil was a pro-wound-healing agent because it had good healing effectiveness with scars with good tensile strength and accelerated repair. The probable mechanism of action of the EO of B. morelensis, during the healing process, is the promotion of the migration of fibroblasts to the site of the wound, making them active in the production of collagen and promoting the remodeling of this collagen.
Assuntos
Bursera/química , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Cromatografia Gasosa-Espectrometria de Massas , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Óleos Voláteis/química , Compostos Fitoquímicos/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Óleos de Plantas/química , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologiaRESUMO
Amphipterygium adstringens is an endemic species in Mexico commonly known as "cuachalalate." Healers to treat gastritis, gastric ulcers, and gastrointestinal cancer have traditionally used the bark. We investigated the effects of alcoholic extract of A. adstringens (AaEE) in DSS-induced colitis in mice. The protective effect of AaEE was determined at 200 mg/kg by oral gavage for 10 days. We determine the effect of AaEE on clinical features (disease activity index), antioxidants, anti-inflammatory, and immunomodulatory activities in relation to the activity of SOD, CAT, and GPx, levels of proinflammatory cytokines, and changes both macroscopic and microscopic of the colonic mucosa. AaEE significantly reduced the inflammation of colon and significantly increased SOD and GPx activities. AaEE also significantly decreased TNF-α, IFN-γ, and IL-1ß cytokine levels compared to DSS-treated mice and reduced both infiltration of inflammatory cells and the mucosal damage in colon. The results suggested the protective potential of AaEE in DSS-induced colitis and this might be attributed to its phytochemicals compounds that have been found to induce a wide spectrum of activities such as reduction in oxidative stress, suppression of inflammation, modulating numerous signal transduction pathways, and induction of apoptosis. The findings of this study suggest that AaEE has substantial potential for the treatment of inflammatory colitis.
Assuntos
Colite Ulcerativa/tratamento farmacológico , Extratos Vegetais/farmacologia , Sapindaceae/química , Animais , Antioxidantes/metabolismo , Apoptose , Catalase/metabolismo , Colite Ulcerativa/induzido quimicamente , Colo/efeitos dos fármacos , Citocinas/metabolismo , Sulfato de Dextrana , Feminino , Glutationa Peroxidase/metabolismo , Inflamação/tratamento farmacológico , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo , Superóxido Dismutase/metabolismoRESUMO
BACKGROUND: The fruit of Cyrtocarpa procera is used to treat stomach diseases by people living in San Rafael, Coxcatlan, Puebla. This work investigated the antibacterial, antioxidant, cytotoxic and anti-inflammatory activities of the fruit produced by this species. METHODS: Methanol extract was obtained by maceration. After obtaining the methanol extract (MeOH1), methanol subextract (MeOH2) and hexane (H) were obtained. The antibacterial activities of MeOH1, MeOH2 and H were evaluated through disc-diffusion. The quenching of free radicals was evaluated by decolorizing a methanolic DPPH solution. The cytotoxic activity of MeOH2 was evaluated by in vitro assay system of growth inhibition of human cervical carcinoma cell line (CasKi). The IL-1ß and TNF-α were determined through ELISA in the supernatants of the macrophage cell line (RAW 264.7). The MeOH2 subextract was separated by column chromatography, seventy-three fractions were collected. RESULTS: The Gram-positive and -negative bacteria examined were sensitive to MeOH1 and MeOH2; the MeOH2 was bactericidal toward Staphyloccocus aureus (MIC = 4 mg/mL) and Vibrio cholera (MIC = 4 mg/mL). The MeOH2 inhibited the DPPH radical (SC50 = 69.7 µg/mL), but a cytotoxicity assay revealed that the extract is not toxic according to the National Cancer Institute (LD50 = 22.03 µg/mL). The production of proinflammatory cytokines (IL- 1ß and TNF- α) by LPS- stimulated macrophages was reduced after the treatments. The methanol extract contained various organic acids, such as citric acid, palmitic acid and α- linoleic acid. CONCLUSIONS: The fruits of Cyrtocarpa procera are employed to treat ailments such as diarrhea, in this study were demonstrated some biological activities involved in a bacterial infection. This is the first research about of the medicinal properties of C. procera fruit.
Assuntos
Anacardiaceae , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Infecções , Fitoterapia , Extratos Vegetais/farmacologia , Animais , Anti-Infecciosos/farmacologia , Compostos de Bifenilo/metabolismo , Linhagem Celular Tumoral , Diarreia/metabolismo , Diarreia/microbiologia , Frutas , Humanos , Infecções/metabolismo , Infecções/microbiologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos , Macrófagos , Camundongos , Picratos/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Vibrio cholerae/efeitos dos fármacosRESUMO
The free living amoeba Naegleria fowleri is pathogenic to humans but also to other mammalians. These amoebae may invade the nasal mucosa and migrate into the brain causing cerebral hemorrhagic necrosis, a rapidly fatal infection. Knowledge of the cytolytic mechanism involved in the destruction of brain tissues by Naegleria trophozoites is limited. In other amoebic species, such as Entamoeba histolytica, we have previously reported the possible lytic role of small cytoplasmic components endowed with proteolytic activities, known as electrondense granules (EDG). Using transmission electron microscopy we now report that EDG, seldom found in long term cultured N. fowleri, are present in abundance in trophozoites recovered from experimental mice brain lesions. Numerous EDG were also observed in amoebae incubated with collagen substrates or cultured epithelial cells. SDS-PAGE assays of concentrated supernatants of these trophozoites, containing EDG, revealed proteolytic activities. These results suggest that EDG may have a clear role in the cytopathic mechanisms of this pathogenic amoeba.
Assuntos
Amebíase/parasitologia , Infecções Protozoárias do Sistema Nervoso Central/parasitologia , Naegleria fowleri/metabolismo , Vesículas Secretórias/metabolismo , Animais , Encéfalo/parasitologia , Encéfalo/patologia , Colágeno/metabolismo , Cães , Eletroforese em Gel de Poliacrilamida , Eritrócitos/parasitologia , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Naegleria fowleri/patogenicidade , Naegleria fowleri/ultraestrutura , Vesículas Secretórias/ultraestrutura , VirulênciaRESUMO
Beekeeping is an activity that generates various products, mainly honey and propolis, with different biological activities that are studied extensively using various methodologies. The influence of various phenolic compounds, such as phenols and flavonoids, which are synthesized and concentrated differently in each product depending on the melliferous flora and sources of resources, on the manufacture of propolis or honey has been investigated. However, the analysis of these products has been performed separately and is outdated in time, and depending on the area and the flowering periods, different crops may be harvested. The analysis of the honey and propolis produced in Cuautitlan, State of Mexico, in the high plateau beekeeping zone, for a period of four years, both in the dry and rainy seasons, was proposed to determine the botanical origin of the honey and propolis. The primary pollen type in both honey and propolis was from Brassica rapa. Physicochemical tests were conducted, revealing higher concentrations of antimicrobial activity in the dry season than in the rainy season. Honey, propolis, and a vegetation extract showed activity against S. aureus, while only honey had an effect on E. coli in both seasons. For antifungal activity, only propolis collected in the rainy season had this activity. The biological properties of these products are closely related to the flora that varies both annually and between seasons, influencing the concentrations of phenolic compounds, as well as the biological activity of honey and propolis.
RESUMO
We analyzed the possible role of glycoconjugates containing α-D-mannose and α-D-glucose residues in adherence of trophozoites to mouse nasal epithelium. Trophozoites incubated with 20 µg of one of three different lectins which preferentially recognized these residues were inoculated intranasally in Balb/c mice. Mouse survival was 40% with Pisum sativum and Canavalia ensiformis and 20% with Galanthus nivalis amebic pretreatment, compared with 0% survival for control animals administered trophozoites without pretreatment. Possibly some of the glycoproteins found in Naegleria fowleri represent an adherence factor. Differences in the saccharide sequences of the Naegleria species, even on the same glycoconjugate structure, could explain the different results corresponding to the distinct pretreatments (C. ensiformis, G. nivalis, and P. sativum). We found a higher expression of glycoconjugates recognized by P. sativum in Naegleria lovaniensis than N. fowleri, probably due to the higher number of oligosaccharides containing an α-1,6-linked fucose moiety expressed on the former species.
Assuntos
Adesão Celular/fisiologia , Glicoconjugados/metabolismo , Manose/química , Naegleria/fisiologia , Mucosa Nasal/metabolismo , Trofozoítos/fisiologia , Animais , Citometria de Fluxo , Glucose , Glicoconjugados/química , Lectinas/química , Lectinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB CRESUMO
The appearance of antimicrobial-resistant pathogens has highlighted the need to search for new compounds that can effectively combat infectious diseases. A potential source of these compounds are the secondary metabolites of species that have been reported as effective traditional treatments of such diseases. Prosopis laevigata is a medicinal plant, and its chemical constituents have shown potential antimicrobial activity. In this study, the antimicrobial activities of the methanolic extract of the leaves of Prosopis laevigata against different bacterial and fungal strains of medical and agronomic interest were investigated in vitro. In addition, the chemical composition of this extract was investigated by HPLC-DAD, GCâMS, and HPLCâMS. The methanolic leaf extract contained 67 mg of GAE/g of total phenols (6.7%), 2.6 mg of QE/g of flavonoids (0.26%), and 11.87 mg of AE/g of total alkaloids (1.18%). Phenolic acids and catechol were the compounds identified by HPLC-DAD. The methanolic extract had strong antimicrobial activity, especially against Staphylococcus aureus (MIC = 0.62 mg/mL), Escherichia coli (MIC = 0.62 mg/mL), Candida tropicalis (MIC = 0.08 mg/mL) and Fusarium moniliforme (MIC = 4.62 mg/mL). These results suggest that the extract of P. laevigata leaves could be a source of antimicrobial molecules. However, it is necessary to delve into its chemical composition.
Assuntos
Infecções por Escherichia coli , Prosopis , Metanol , Testes Hematológicos , Escherichia coli , Extratos Vegetais/farmacologiaRESUMO
The genus Fusarium causes many diseases in economically important plants. Synthetic agents are used to control postharvest diseases caused by Fusarium, but the use of these synthetic agents generates several problems, making it necessary to develop new alternative pesticides. Essential oils can be used as a new control strategy. The essential oils of Bursera morelensis and Lippia graveolens have been shown to have potent antifungal activity against Fusarium. However, for the adequate management of diseases, as well as the optimization of the use of essential oils, it is necessary to know how essential oils act on the growth and reproduction of the fungus. In this study, the target of action of the essential oils of B. morelensis and L. graveolens and of the pure compounds present in the essential oils (carvacrol, p-cymene, α-phellandrene, α-pinene, and Υ-terpinene) was determined by evaluating the effect on hyphal morphology, as well as on spore production and germination of three Fusarium species. In this work, carvacrol was found to be the compound that produced the highest inhibition of radial growth. Essential oils and pure compounds caused significant damage to hyphal morphology and affected spore production and germination of Fusarium species.
RESUMO
Fruit and vegetable crops that are not consumed immediately, unlike other agricultural products, require economic and time investments until they reach the final consumers. Synthetic agrochemicals are used to maintain and prolong the storage life of crops and avoid losses caused by phytopathogenic microorganisms. However, the excessive use of synthetic agrochemicals creates health problems and contributes to environmental pollution. To avoid these problems, less toxic and environment-friendly alternatives are sought. One of these alternatives is the application of biopesticides. However, few biopesticides are currently used. In this study, the biopesticide activity of Bursera morelensis and Lippia graveolens essential oils was evaluated. Their antifungal activity has been verified in an in vitro model, and chemical composition has been determined using gas chromatography-mass spectrometry. Their antifungal activity was corroborated in vitro, and their activity as biopesticides was subsequently evaluated in a plant model. In addition, the persistence of these essential oils on the surface of the plant model was determined. Results suggest that both essential oils are promising candidates for producing biopesticides. This is the first study showing that B. morelensis and L. graveolens essential oils work by inhibiting mycelial growth and spore germination and are environment-friendly biopesticides.
Assuntos
Antifúngicos/farmacologia , Agentes de Controle Biológico/farmacologia , Bursera/química , Fusarium/efeitos dos fármacos , Lippia/química , Óleos Voláteis/farmacologia , Solanum lycopersicum/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Praguicidas/farmacologia , Extratos Vegetais/farmacologia , Óleos de Plantas/farmacologiaRESUMO
Jatropha neopauciflora is an endemic species of Mexico. Its latex is used to treat wounds, scarring, oral infections, and loose teeth. To date, there are no studies that validate at a morphological level a wound-healing use in diabetes. The present research aimed to evaluate the wound-healing capacity of the latex of J. neopauciflora in the skin of healthy and streptozotocin-induced diabetic mice. Also, a chemical analysis of the latex through molecular exclusion chromatography and HPLC were performed. Male mice (Mus musculus) of 7-week-old CD1 strain were used. Groups of healthy and diabetic mice were formed. A longitudinal cut of 1 cm was performed on the depilated skin. All treatments were topically applied to the wound area twice a day for ten days. At the end of the experiments, the skin sections were obtained from the wound area and stained with Hematoxylin-Eosin. Then we counted the number of active fibroblasts in all the experimental groups. In normal mice, the latex accelerated the wound-healing process and decreased the number of active fibroblasts, similarly to Recoveron. In diabetic mice, the latex and Recoveron increased the number of active fibroblasts. In normal and diabetic mice, a thin and orderly epidermis was observed. Molecular exclusion chromatography exhibited 58 fractions, 14 of which were subjected to HPLC, to detect catechin, a flavonoid with antioxidant, antimicrobial, and anti-inflammatory properties. J. neopauciflora latex can be useful for wound treatment in patients with diabetes mellitus because it accelerates and promotes the wound-healing process.
Assuntos
Diabetes Mellitus Experimental , Jatropha , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Humanos , Látex , Camundongos , Pele , CicatrizaçãoRESUMO
The aim of this work was to evaluate the gastroprotective activity of a Mexican propolis on indomethacin-induced gastric ulcers in a mouse model. The following contents of the ethanolic extract of propolis of Chihuahua (EEPCh) were determined: antioxidant activity (SA50), total phenolic content (TPC), total flavonoid content (TFC), and chemical composition by HPLC-DAD and HPLC-MS, as well as acute toxicity by OECD Guideline 423. Gastric lesions were induced by intragastric indomethacin treatment in male ICR mice. As the positive control, omeprazole was administered, and three doses of EEPCh were evaluated (50, 150 and 300 mg/kg). Gastric mucosal injury, histological changes and mucosal content were evaluated by means of H&E and PAS staining. For homogenized gastric tissues, the following were evaluated: TBARS, MPO, and PGE2 levels; SOD and GPx antioxidant enzymatic activity; and the concentrations of the proinflammatory cytokines, TNF-α, IL-1ß and IL-6. EEPCh had a significant SA50 of 41.55 µg/mL. The TPC of EEPCh was 860 mg GAE/g, and its TFC was 49.58 mg QE/g. Different phenolic compounds were identified in the extract and were not toxic. The EEPCh doses decreased mucosal damage and histological injuries, maintained the mucosal content and reduced the TBARS, MPO and concentrations of proinflammatory cytokines in gastric ulcer tissues. The 150 and 300 mg/kg doses increased the SOD activity and maintained the PGE2 content. Only the 300 mg/kg dose increased the GPx activity. The results of this study suggest that EEPCh displays gastroprotective effects by means of its antioxidant activity and anti-inflammatory effects and promotes ulcer protection through the maintenance of mucosal content and PGE2 levels.
Assuntos
Antiulcerosos/química , Antiulcerosos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Própole/química , Própole/farmacologia , Úlcera Gástrica/prevenção & controle , Animais , Antiulcerosos/uso terapêutico , Antioxidantes/análise , Citocinas/metabolismo , Dinoprostona/metabolismo , Modelos Animais de Doenças , Feminino , Flavonoides/análise , Flavonoides/química , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/lesões , Mucosa Gástrica/patologia , Glutationa Peroxidase/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Indometacina/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Camundongos Endogâmicos ICR , Omeprazol/farmacologia , Fenóis/análise , Fenóis/química , Extratos Vegetais/uso terapêutico , Própole/uso terapêutico , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/patologia , Superóxido Dismutase/efeitos dos fármacos , Superóxido Dismutase/metabolismoRESUMO
Gastric ulcer disease induced by the consumption of NSAIDs is a major public health problem. The therapy used for its treatment causes adverse effects in the patient. Propolis is a natural product that has been used for the treatments of different diseases around the world. Nevertheless, there is little information about the activity of propolis in gastric ulcers caused by treatment with NSAIDs. Therefore, this review evaluates and compares the gastroprotective potential of propolis and its function against NSAID-induced gastric ulcers, for which a systematic search was carried out in the PubMed and ScienceDirect databases. The main criteria were articles that report the gastroprotective activity of propolis against the damage produced by NSAIDs in the gastric mucosa. Gastroprotection was related to the antioxidant, antisecretory, and cytoprotective effects, as well as the phenolic compounds present in the chemical composition of propolis. However, most of the studies used different doses of NSAIDs and propolis and evaluated different parameters. Propolis has proven to be a good alternative for the treatment of gastric ulcer disease. However, future studies should be carried out to identify the compounds responsible for these effects and to determine their potential use in people.
Assuntos
Antiulcerosos/farmacologia , Antioxidantes/farmacologia , Apiterapia , Própole/farmacologia , Úlcera Gástrica/tratamento farmacológico , Animais , Anti-Inflamatórios não Esteroides/efeitos adversos , Mucosa Gástrica/efeitos dos fármacos , Humanos , Úlcera Gástrica/induzido quimicamente , Resultado do TratamentoRESUMO
BACKGROUDS: Cannabinoid receptor antagonists have been suggested as a novel treatment for obesity and diabetes. We have developed a synthetic cannabinoid receptor antagonist denominated BAR-1. As the function and integrity of a ß-cell cellular structure are important keys for diabetes onset, we evaluated the effects of pharmacological administration of BAR-1 on prediabetic and diabetic rodents. METHODS: CD-1 mice fed a hypercaloric diet or treated with streptozotocin were treated with 10 mg/kg BAR-1 for 2, 4 or 8 weeks. Body weight, oral glucose tolerance test, HbA1c, triglycerides and insulin in serum were measured. In isolated islets, we evaluated stimulated secretion and mRNA expression, and relative area of islets in fixed pancreases. Docking analysis of BAR-1 was complemented. RESULTS: BAR-1 treatment slowed down weight gain in prediabetic mice. Fasting glucose-insulin relation also decreased in BAR-1-treated mice and glucose-stimulated insulin secretion was increased in isolated islets, without effects in oral test. Diabetic mice treated with BAR-1 showed a reduced glucose and a partial recovery of islet integrity. Gene expression of insulin and glucagon showed biphasic behaviour, increasing after 4 weeks of BAR-1 administration; however, after 8 weeks, mRNA abundance decreased significantly. Administration of BAR-1 also prevents changes in endocannabinoid element expression observed in prediabetic mice. No changes were detected in other parameters studied, including the histological structure. A preliminary in-silico study suggests a close interaction with CB1 receptor. CONCLUSIONS: BAR-1 induces improvement of islet function, isolated from both prediabetic and diabetic mice. Effects of BAR-1 suggest a possible interaction with other cannabinoid receptors.