Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 23(11): 4885-4892, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37205630

RESUMO

Nanocavities formed by ultrathin metallic gaps permit the reproducible engineering and enhancement of light-matter interaction, with mode volumes reaching the smallest values allowed by quantum mechanics. While the enhanced vacuum field in metallic nanogaps has been firmly evidenced, fewer experimental reports have examined the far-field to near-field input coupling under strongly focused laser beam. Here, we experimentally demonstrate selective excitation of nanocavity modes controlled by the polarization and frequency of the laser beam. We reveal mode selectivity by recording confocal maps of Raman scattering excited by cylindrical vector beams, which are compared to the known excitation near-field patterns. Our measurements reveal the transverse vs longitudinal polarization of the excited antenna mode and how the input coupling rate depends on laser wavelength. The method introduced here is easily applicable to other experimental scenarios, and our results help connect far-field with near-field parameters in quantitative models of nanocavity-enhanced phenomena.

2.
J Phys Chem A ; 126(28): 4657-4663, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35792893

RESUMO

We present Molecular Vibration Explorer, a freely accessible online database and interactive tool for exploring vibrational spectra and tensorial light-vibration coupling strengths of a large collection of thiolated molecules. The "Gold" version of the database gathers the results from density functional theory calculations on 2800 commercially available thiol compounds linked to a gold atom, with the main motivation to screen the best molecules for THz and mid-infrared to visible upconversion. Additionally, the "Thiol" version of the database contains results for 1900 unbound thiolated compounds. They both provide access to a comprehensive set of computed spectroscopic parameters for all vibrational modes of all molecules in the database. The user can simultaneously investigate infrared absorption, Raman scattering, and vibrational sum- and difference-frequency generation cross sections. Molecules can be screened for various parameters in custom frequency ranges, such as a large Raman cross-section under a specific molecular orientation, or a large orientation-averaged sum-frequency generation (SFG) efficiency. The user can select polarization vectors for the electromagnetic fields, set the orientation of the molecule, and customize parameters for plotting the corresponding IR, Raman, and sum-frequency spectra. We illustrate the capabilities of this tool with selected applications in the field of surface-enhanced spectroscopy.

3.
Nano Lett ; 21(7): 2709-2718, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33754742

RESUMO

Monolayer transition-metal dichalcogenides with direct bandgaps are emerging candidates for optoelectronic devices, such as photodetectors, light-emitting diodes, and electro-optic modulators. Here we report a low-loss integrated platform incorporating molybdenum ditelluride monolayers with silicon nitride photonic microresonators. We achieve microresonator quality factors >3 × 106 in the telecommunication O- to E-bands. This paves the way for low-loss, hybrid photonic integrated circuits with layered semiconductors, not requiring heterogeneous wafer bonding.

4.
Nat Commun ; 12(1): 2731, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021133

RESUMO

Plasmonic nanojunctions, consisting of adjacent metal structures with nanometre gaps, can support localised plasmon resonances that boost light matter interactions and concentrate electromagnetic fields at the nanoscale. In this regime, the optical response of the system is governed by poorly understood dynamical phenomena at the frontier between the bulk, molecular and atomic scales. Here, we report ubiquitous spectral fluctuations in the intrinsic light emission from photo-excited gold nanojunctions, which we attribute to the light-induced formation of domain boundaries and quantum-confined emitters inside the noble metal. Our data suggest that photoexcited carriers and gold adatom - molecule interactions play key roles in triggering luminescence blinking. Surprisingly, this internal restructuring of the metal has no measurable impact on the Raman signal and scattering spectrum of the plasmonic cavity. Our findings demonstrate that metal luminescence offers a valuable proxy to investigate atomic fluctuations in plasmonic cavities, complementary to other optical and electrical techniques.

5.
Science ; 374(6572): 1264-1267, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34855500

RESUMO

Coherent upconversion of terahertz and mid-infrared signals into visible light opens new horizons for spectroscopy, imaging, and sensing but represents a challenge for conventional nonlinear optics. Here, we used a plasmonic nanocavity hosting a few hundred molecules to demonstrate optomechanical transduction of submicrowatt continuous-wave signals from the mid-infrared (32 terahertz) onto the visible domain at ambient conditions. The incoming field resonantly drives a collective molecular vibration, which imprints a coherent modulation on a visible pump laser and results in upconverted Raman sidebands with subnatural linewidth. Our dual-band nanocavity offers an estimated 13 orders of magnitude enhancement in upconversion efficiency per molecule. Our results demonstrate that molecular cavity optomechanics is a flexible paradigm for frequency conversion leveraging tailorable molecular and plasmonic properties.

6.
Nat Nanotechnol ; 11(2): 164-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26595330

RESUMO

The exceptional enhancement of Raman scattering by localized plasmonic resonances in the near field of metallic nanoparticles, surfaces or tips (SERS, TERS) has enabled spectroscopic fingerprinting down to the single molecule level. The conventional explanation attributes the enhancement to the subwavelength confinement of the electromagnetic field near nanoantennas. Here, we introduce a new model that also accounts for the dynamical nature of the plasmon-molecule interaction. We thereby reveal an enhancement mechanism not considered before: dynamical backaction amplification of molecular vibrations. We first map the system onto the canonical Hamiltonian of cavity optomechanics, in which the molecular vibration and the plasmon are parametrically coupled. We express the vacuum optomechanical coupling rate for individual molecules in plasmonic 'hot-spots' in terms of the vibrational mode's Raman activity and find it to be orders of magnitude larger than for microfabricated optomechanical systems. Remarkably, the frequency of commonly studied molecular vibrations can be comparable to or larger than the plasmon's decay rate. Together, these considerations predict that an excitation laser blue-detuned from the plasmon resonance can parametrically amplify the molecular vibration, leading to a nonlinear enhancement of Raman emission that is not predicted by the conventional theory. Our optomechanical approach recovers known results, provides a quantitative framework for the calculation of cross-sections, and enables the design of novel systems that leverage dynamical backaction to achieve additional, mode-selective enhancements. It also provides a quantum mechanical framework to analyse plasmon-vibrational interactions in terms of molecular quantum optomechanics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA