Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Photosynth Res ; 121(2-3): 311-22, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24844569

RESUMO

Carbon concentrating mechanisms (CCMs) are common among microalgae, but their regulation and even existence in some of the most promising biofuel production strains is poorly understood. This is partly because screening for new strains does not commonly include assessment of CCM function or regulation despite its fundamental role in primary carbon metabolism. In addition, the inducible nature of many microalgal CCMs means that environmental conditions should be considered when assessing CCM function and its potential impact on biofuels. In this study, we address the effect of environmental conditions by combining novel, high frequency, on-line (13)CO2 gas exchange screen with microscope-based lipid characterization to assess CCM function in Nannochloropsis salina and its interaction with lipid production. Regulation of CCM function was explored by changing the concentration of CO2 provided to continuous cultures in airlift bioreactors where cell density was kept constant across conditions by controlling the rate of media supply. Our isotopic gas exchange results were consistent with N. salina having an inducible "pump-leak" style CCM similar to that of Nannochloropsis gaditana. Though cells grew faster at high CO2 and had higher rates of net CO2 uptake, we did not observe significant differences in lipid content between conditions. Since the rate of CO2 supply was much higher for the high CO2 conditions, we calculated that growing cells bubbled with low CO2 is about 40 % more efficient for carbon capture than bubbling with high CO2. We attribute this higher efficiency to the activity of a CCM under low CO2 conditions.


Assuntos
Carbono/metabolismo , Microalgas/metabolismo , Dióxido de Carbono/metabolismo , Fotossíntese
2.
Plant Cell Environ ; 36(3): 542-52, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22897236

RESUMO

In recent years, the effect of heat-induced electrical signalling on plant photosynthetic activity has been demonstrated for many plant species. However, the underlying triggers of the resulting transient inhibition of photosynthesis still remain unknown. To further investigate on this phenomenon, we focused in our present study on soybean (Glycine max L.) on the direct effect of signal transmission in the leaf mesophyll on conductance for CO(2) diffusion in the mesophyll (g(m) ) and detected a drastic decline in g(m) following the electrical signal, whereas the photosynthetic electron transport rate (ETR) was only marginally affected. In accordance with the drop in net photosynthesis (A(N) ), energy dispersive X-ray analysis (EDXA) revealed a shift of K, Mg, O and P on leaf chloroplasts. Control experiments under elevated CO(2) conditions proved the transient reduction of A(N) , ETR, the chloroplast CO(2) concentration (C(c) ) and g(m) to be independent of the external CO(2) regime, whereas the effect of the electrical signal on stomatal conductance for CO(2) (g(s) ) turned out much less distinctive. We therefore conclude that the effect of electrical signalling on photosynthesis in soybean is triggered by its immediate effects on g(m) .


Assuntos
Dióxido de Carbono/metabolismo , Glycine max/metabolismo , Potenciais da Membrana , Células do Mesofilo/metabolismo , Fotossíntese , Cloroplastos/metabolismo , Temperatura Alta , Íons/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA