Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 23(4): e53746, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35199910

RESUMO

Cachexia is a wasting syndrome characterized by devastating skeletal muscle atrophy that dramatically increases mortality in various diseases, most notably in cancer patients with a penetrance of up to 80%. Knowledge regarding the mechanism of cancer-induced cachexia remains very scarce, making cachexia an unmet medical need. In this study, we discovered strong alterations of iron metabolism in the skeletal muscle of both cancer patients and tumor-bearing mice, characterized by decreased iron availability in mitochondria. We found that modulation of iron levels directly influences myotube size in vitro and muscle mass in otherwise healthy mice. Furthermore, iron supplementation was sufficient to preserve both muscle function and mass, prolong survival in tumor-bearing mice, and even rescues strength in human subjects within an unexpectedly short time frame. Importantly, iron supplementation refuels mitochondrial oxidative metabolism and energy production. Overall, our findings provide new mechanistic insights in cancer-induced skeletal muscle wasting, and support targeting iron metabolism as a potential therapeutic option for muscle wasting diseases.


Assuntos
Caquexia , Neoplasias , Animais , Caquexia/etiologia , Caquexia/metabolismo , Suplementos Nutricionais , Humanos , Ferro/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
2.
Am J Hematol ; 92(6): 562-568, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28335084

RESUMO

Hereditary Hemochromatosis (HH) is a genetically heterogeneous disorder caused by mutations in at least five different genes (HFE, HJV, TFR2, SLC40A1, HAMP) involved in the production or activity of the liver hormone hepcidin, a key regulator of systemic iron homeostasis. Nevertheless, patients with an HH-like phenotype that remains completely/partially unexplained despite extensive sequencing of known genes are not infrequently seen at referral centers, suggesting a role of still unknown genetic factors. A compelling candidate is Bone Morphogenetic Protein 6 (BMP6), which acts as a major activator of the BMP-SMAD signaling pathway, ultimately leading to the upregulation of hepcidin gene transcription. A recent seminal study by French authors has described three heterozygous missense mutations in BMP6 associated with mild to moderate late-onset iron overload (IO). Using an updated next-generation sequencing (NGS)-based genetic test in IO patients negative for the classical HFE p.Cys282Tyr mutation, we found three BMP6 heterozygous missense mutations in four patients from three different families. One mutation (p.Leu96Pro) has already been described and proven to be functional. The other two (p.Glu112Gln, p.Arg257His) were novel, and both were located in the pro-peptide domain known to be crucial for appropriate BMP6 processing and secretion. In silico modeling also showed results consistent with their pathogenetic role. The patients' clinical phenotypes were similar to that of other patients with BMP6-related IO recently described. Our results independently add further evidence to the role of BMP6 mutations as likely contributing factors to late-onset moderate IO unrelated to mutations in the established five HH genes.


Assuntos
Proteína Morfogenética Óssea 6/genética , Sobrecarga de Ferro/etiologia , Mutação , Domínios e Motivos de Interação entre Proteínas/genética , Adulto , Idoso , Substituição de Aminoácidos , Biomarcadores , Proteína Morfogenética Óssea 6/química , Códon , Feminino , Predisposição Genética para Doença , Hemocromatose/complicações , Hemocromatose/genética , Hepcidinas/sangue , Hepcidinas/metabolismo , Heterozigoto , Humanos , Sobrecarga de Ferro/diagnóstico , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Fenótipo , Conformação Proteica
3.
Haematologica ; 101(12): 1499-1507, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27540134

RESUMO

Iron overload due to hemochromatosis or chronic blood transfusions has been associated with the development of osteoporosis. However, the impact of changes in iron homeostasis on osteoblast functions and the underlying mechanisms are poorly defined. Since Wnt signaling is a critical regulator of bone remodeling, we aimed to analyze the effects of iron overload and iron deficiency on osteoblast function, and further define the role of Wnt signaling in these processes. Therefore, bone marrow stromal cells were isolated from wild-type mice and differentiated towards osteoblasts. Exposure of the cells to iron dose-dependently attenuated osteoblast differentiation in terms of mineralization and osteogenic gene expression, whereas iron chelation with deferoxamine promoted osteogenic differentiation in a time- and dose-dependent manner up to 3-fold. Similar results were obtained for human bone marrow stromal cells. To elucidate whether the pro-osteogenic effect of deferoxamine is mediated via Wnt signaling, we performed a Wnt profiler array of deferoxamine-treated osteoblasts. Wnt5a was amongst the most highly induced genes. Further analysis revealed a time- and dose-dependent induction of Wnt5a being up-regulated 2-fold after 48 h at 50 µM deferoxamine. Pathway analysis using specific inhibitors revealed that deferoxamine utilized the phosphatidylinositol-3-kinase and nuclear factor of activated T cell pathways to induce Wnt5a expression. Finally, we confirmed the requirement of Wnt5a in the deferoxamine-mediated osteoblast-promoting effects by analyzing the matrix mineralization of Wnt5a-deficient cells. The promoting effect of deferoxamine on matrix mineralization in wild-type cells was completely abolished in Wnt5a-/- cells. Thus, these data demonstrate that Wnt5a is critical for the pro-osteogenic effects of iron chelation using deferoxamine.


Assuntos
Quelantes de Ferro/farmacologia , Ferro/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Proteína Wnt-5a/metabolismo , Adulto , Animais , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Desferroxamina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Fatores de Transcrição NFATC/metabolismo , Osteoblastos/citologia , Osteogênese/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Wnt-5a/genética , Adulto Jovem
4.
Hemoglobin ; 40(6): 371-376, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28361595

RESUMO

The aim of this study was to describe the mutational spectrum of hemoglobinopathies during the period 1988-2015 in Umbria, Central Italy, which has never been considered endemic for these conditions. Twenty-four different ß-globin gene mutations were identified in 188 patients and eight different α-globin gene mutations in 74 patients. Sixty percent ß-thalassemia (ß-thal), 85.0% sickle cell disease, 44.0% Hb S (HBB: c.20A>T)/ß-thal and 85.0% compound heterozygotes for hemoglobin (Hb) variant-carrying patients were diagnosed or molecularly characterized in the last 3 years. Moreover, most homozygous or compound heterozygous patients (84.5%) came from foreign countries, while only 15.5% were of Italian origin. These data are in accordance with the increasing foreign resident population in Umbria, which has nearly doubled in 10 years (2004-2014). Different from ß-globin gene variations, no increasing trend in α defects was observed in our study cohort. Consistently, 58.0% of patients have an Italian origin, suggesting no broad influence of foreign migration in the α-globin genes genetic background. As few defects are prevalent in each country of origin or ethnic group, their knowledge may provide a proper strategy for the identification of mutations in immigrant individuals in a non-endemic region and be important for carrier identification and prenatal screening.


Assuntos
Hemoglobinopatias/genética , Mutação/genética , Talassemia alfa/genética , Talassemia beta/genética , Emigrantes e Imigrantes , Etnicidade/genética , Feminino , Hemoglobinopatias/epidemiologia , Humanos , Itália/epidemiologia , Masculino , Talassemia alfa/epidemiologia , Talassemia beta/epidemiologia
5.
Haematologica ; 99(6): 1016-21, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24658816

RESUMO

Transferrin receptor 2 (TFR2) is a transmembrane glycoprotein expressed in the liver and in the erythroid compartment, mutated in a form of hereditary hemochromatosis. Hepatic TFR2, together with HFE, activates the transcription of the iron-regulator hepcidin, while erythroid TFR2 is a member of the erythropoietin receptor complex. The TMPRSS6 gene, encoding the liver-expressed serine protease matriptase-2, is the main inhibitor of hepcidin and inactivation of TMPRSS6 leads to iron deficiency with high hepcidin levels. Here we evaluate the phenotype resulting from the genetic loss of Tmprss6 in Tfr2 total (Tfr2(-/-)) and liver-specific (Tfr2(LCKO)) knockout mice. Tmprss6(-/-)Tfr2(-/-) and Tmprss6(-/-)Tfr2(LCKO) mice have increased hepcidin levels and show iron-deficiency anemia like Tmprss6(-/-)mice. However, while Tmprss6(-/-)Tfr2(LCKO) are phenotypically identical to Tmprss6(-/-) mice, Tmprss6(-/-)Tfr2(-/-) mice have increased red blood cell count and more severe microcytosis than Tmprss6(-/-) mice. In addition hepcidin expression in Tmprss6(-/-)Tfr2(-/-) mice is higher than in the wild-type animals, but lower than in Tmprss6(-/-) mice, suggesting partial inhibition of the hepcidin activating pathway. Our results prove that hepatic TFR2 acts upstream of TMPRSS6. In addition Tfr2 deletion causes a relative erythrocytosis in iron-deficient mice, which likely attenuates the effect of over-expression of hepcidin in Tmprss6(-/-) mice. Since liver-specific deletion of Tfr2 in Tmprss6(-/-) mice does not modify the erythrocyte count, we speculate that loss of Tfr2 in the erythroid compartment accounts for the hematologic phenotype of Tmprss6(-/-)Tfr2(-/-) mice. We propose that TFR2 is a limiting factor for erythropoiesis, particularly in conditions of iron restriction.


Assuntos
Células Eritroides/metabolismo , Eritropoese/fisiologia , Proteínas de Membrana/genética , Receptores da Transferrina/metabolismo , Serina Endopeptidases/genética , Anemia/sangue , Anemia/genética , Anemia/metabolismo , Animais , Contagem de Eritrócitos , Genótipo , Hepcidinas/metabolismo , Ferro/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Receptores da Transferrina/genética
6.
Nat Genet ; 33(1): 21-2, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12469120

RESUMO

Animal models indicate that the antimicrobial peptide hepcidin (HAMP; OMIM 606464) is probably a key regulator of iron absorption in mammals. Here we report the identification of two mutations (93delG and 166C-->T) in HAMP on 19q13 in two families with a new type of juvenile hemochromatosis.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Hemocromatose/genética , Mutação/genética , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/química , Sequência de Bases , Criança , Análise Mutacional de DNA , Feminino , Hepcidinas , Humanos , Masculino , Dados de Sequência Molecular , Linhagem , Polimorfismo Conformacional de Fita Simples
7.
Antioxidants (Basel) ; 12(6)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37372043

RESUMO

The use of specific inhibitors towards mutant BRAF (BRAFi) and MEK (MEKi) in BRAF-mutated patients has significantly improved progression-free and overall survival of metastatic melanoma patients. Nevertheless, half of the patients still develop resistance within the first year of therapy. Therefore, understanding the mechanisms of BRAFi/MEKi-acquired resistance has become a priority for researchers. Among others, oxidative stress-related mechanisms have emerged as a major force. The aim of this study was to evaluate the contribution of Nrf2, the master regulator of the cytoprotective and antioxidant response, in the BRAFi/MEKi acquired resistance of melanoma. Moreover, we investigated the mechanisms of its activity regulation and the possible cooperation with the oncogene YAP, which is also involved in chemoresistance. Taking advantage of established in vitro melanoma models resistant to BRAFi, MEKi, or dual resistance to BRAFi/MEKi, we demonstrated that Nrf2 was upregulated in melanoma cells resistant to targeted therapy at the post-translational level and that the deubiquitinase DUB3 participated in the control of the Nrf2 protein stability. Furthermore, we found that Nrf2 controlled the expression of YAP. Importantly, the inhibition of Nrf2, directly or through inhibition of DUB3, reverted the resistance to targeted therapies.

8.
Blood ; 116(24): 5357-67, 2010 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-20826723

RESUMO

Erythropoietin (Epo) is required for erythroid progenitor differentiation. Although Epo crosslinking experiments have revealed the presence of Epo receptor (EpoR)-associated proteins that could never be identified, EpoR is considered to be a paradigm for homodimeric cytokine receptors. We purified EpoR-binding partners and identified the type 2 transferrin receptor (TfR2) as a component of the EpoR complex corresponding to proteins previously detected in cross-linking experiments. TfR2 is involved in iron metabolism by regulating hepcidin production in liver cells. We show that TfR2 and EpoR are synchronously coexpressed during the differentiation of erythroid progenitors. TfR2 associates with EpoR in the endoplasmic reticulum and is required for the efficient transport of this receptor to the cell surface. Erythroid progenitors from TfR2(-/-)mice show a decreased sensitivity to Epo and increased circulating Epo levels. In human erythroid progenitors, TfR2 knockdown delays the terminal differentiation. Erythroid cells produce growth differentiation factor-15, a cytokine that suppresses hepatic hepcidin production in certain erythroid diseases such as thalassemia. We show that the production of growth differentiation factor-15 by erythroid cells is dependent on both Epo and TfR2. Taken together, our results show that TfR2 exhibits a non hepatic function as a component of the EpoR complex and is required for efficient erythropoiesis.


Assuntos
Eritropoese , Receptores da Eritropoetina/química , Receptores da Transferrina/fisiologia , Animais , Diferenciação Celular , Regulação da Expressão Gênica , Fator 15 de Diferenciação de Crescimento/biossíntese , Camundongos , Camundongos Knockout , Complexos Multiproteicos/química , Transporte Proteico , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo
9.
Blood ; 115(16): 3382-9, 2010 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-20179178

RESUMO

Transferrin receptor 2 (TFR2) is a transmembrane protein that is mutated in hemochromatosis type 3. The TFR2 gene is transcribed in 2 main isoforms: the full-length (alpha) and a shorter form (beta). alpha-Tfr2 is the sensor of diferric transferrin, implicated in the modulation of hepcidin, the main regulator of iron homeostasis. The function of the putative beta-Tfr2 protein is unknown. We have developed a new mouse model (KI) lacking beta-Tfr2 compared with Tfr2 knockout mice (KO). Adult Tfr2 KO mice show liver iron overload and inadequate hepcidin levels relative to body iron stores, even though they increase Bmp6 production. KI mice have normal transferrin saturation, liver iron concentration, hepcidin and Bmp6 levels but show a transient anemia at young age and severe spleen iron accumulation in adult animals. Fpn1 is strikingly decreased in the spleen of these animals. These findings and the expression of beta-Tfr2 in wild-type mice spleen suggest a role for beta-Tfr2 in Fpn1 transcriptional control. Selective inactivation of liver alpha-Tfr2 in KI mice (LCKO-KI) returned the phenotype to liver iron overload. Our results strengthen the function of hepatic alpha-Tfr2 in hepcidin activation, suggest a role for extrahepatic Tfr2 and indicate that beta-Tfr2 may specifically control spleen iron efflux.


Assuntos
Ferro/metabolismo , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Western Blotting , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Hemocromatose/genética , Hemocromatose/metabolismo , Hepcidinas , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Sítio-Dirigida , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Baço/metabolismo
10.
Sci Rep ; 12(1): 11724, 2022 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-35810203

RESUMO

During physiological aging, iron accumulates in the brain with a preferential distribution in regions that are more vulnerable to age-dependent neurodegeneration such as the cerebral cortex and hippocampus. In the brain of aged wild-type mice, alteration of the Brain Blood Barrier integrity, together with a marked inflammatory and oxidative state lead to increased permeability and deregulation of brain-iron homeostasis. In this context, we found that iron accumulation drives Hepcidin upregulation in the brain and the inhibition of the iron exporter Ferroportin1. We also observed the transcription and the increase of NCOA4 levels in the aged brain together with the increase of light-chain enriched ferritin heteropolymers, more efficient as iron chelators. Interestingly, in cerebral cortex and hippocampus, Ferroportin1 is mainly expressed by astrocytes, while the iron storage protein ferritin light-chain by neurons. This differential distribution suggests that astrocytes mediate iron shuttling in the nervous tissue and that neurons are unable to metabolize it. Our findings highlight for the first time that Hepcidin/Ferroportin1 axis and NCOA4 are directly involved in iron metabolism in mice brain during physiological aging as a response to a higher brain iron influx.


Assuntos
Astrócitos , Hepcidinas , Envelhecimento/metabolismo , Animais , Astrócitos/metabolismo , Encéfalo/metabolismo , Ferritinas/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Ferro/metabolismo , Camundongos , Neurônios/metabolismo
11.
Antioxidants (Basel) ; 10(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34942967

RESUMO

Iron accumulation is a key mediator of several cytotoxic mechanisms leading to the impairment of redox homeostasis and cellular death. Iron overload is often associated with haematological diseases which require regular blood transfusion/phlebotomy, and it represents a common complication in thalassaemic patients. Major damages predominantly occur in the liver and the heart, leading to a specific form of cell death recently named ferroptosis. Different from apoptosis, necrosis, and autophagy, ferroptosis is strictly dependent on iron and reactive oxygen species, with a dysregulation of mitochondrial structure/function. Susceptibility to ferroptosis is dependent on intracellular antioxidant capacity and varies according to the different cell types. Chemotherapy-induced cardiotoxicity has been proven to be mediated predominantly by iron accumulation and ferroptosis, whereas there is evidence about the role of ferritin in protecting cardiomyocytes from ferroptosis and consequent heart failure. Another paradigmatic organ for transfusion-associated complication due to iron overload is the liver, in which the role of ferroptosis is yet to be elucidated. Some studies report a role of ferroptosis in the initiation of hepatic inflammation processes while others provide evidence about an involvement in several pathologies including immune-related hepatitis and acute liver failure. In this manuscript, we aim to review the literature to address putative common features between the response to ferroptosis in the heart and liver. A better comprehension of (dys)similarities is pivotal for the development of future therapeutic strategies that can be designed to specifically target this type of cell death in an attempt to minimize iron-overload effects in specific organs.

12.
Free Radic Biol Med ; 174: 202-210, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34364982

RESUMO

The intrinsic chemoresistance of pancreatic ductal adenocarcinoma (PDAC) represents the main obstacle in treating this aggressive malignancy. It has been observed that high antioxidant levels and upregulated Nrf2 and the YAP protein expression can be involved in PDAC chemoresistance. The mechanisms of Nrf2 and YAP increase need to be clarified. We chose a panel of PDAC cell lines with diverse sensitivity to cisplatin and gemcitabine. In PANC-1 chemoresistant cells, we found a low level of oxidative stress and high levels of Nrf2 and YAP protein expressions and their respective targets. On the contrary, in CFPAC-1 chemosensitive cells, we found high levels of oxidative stress and low level of these two proteins, as well as their respective targets. In MiaPaCa-2 cells with a middle chemoresistance, we observed intermediate features. When Nrf2 and YAP were inhibited in PANC-1 cells by Ailanthone, a plant extract, we observed a reduction of viability, thus sustaining the role of these two proteins in maintaining the PDAC chemoresistance. We then delved into the mechanisms of the Nrf2 and YAP protein upregulation in chemoresistance, discovering that it was at a post-translational level since the mRNA expressions did not match the protein levels. Treatments of PANC-1 cells with the proteasome inhibitor MG-132 and the protein synthesis inhibitor cycloheximide further confirmed this observation. The expression of DUB3 and OTUD1 deubiquitinases, involved in the control of Nrf2 and YAP protein level, respectively, was also investigated. Both protein expressions were higher in PANC-1 cells, intermediate in MiaPaCa-2 cells, and lower in CFPAC-1 cells. When DUB3 or OTUD1 were silenced, both Nrf2 and YAP expressions were downregulated. Importantly, in deubiquitinase-silenced cells, we observed a great reduction of proliferation and a higher sensitivity to gemcitabine treatment, suggesting that DUB3 and OTUD1 can represent a suitable target to overcome chemoresistance in PDAC cells.


Assuntos
Fator 2 Relacionado a NF-E2 , Neoplasias Pancreáticas , Linhagem Celular Tumoral , Enzimas Desubiquitinantes , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Proteases Específicas de Ubiquitina
13.
Haematologica ; 95(11): 1832-40, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20634490

RESUMO

BACKGROUND: Impaired regulation of hepcidin in response to iron is the cause of genetic hemochromatosis associated with defects of HFE and transferrin receptor 2. However, the role of these proteins in the regulation of hepcidin expression is unclear. DESIGN AND METHODS: Hepcidin expression, SMAD and extracellular signal-regulated kinase (Erk) phosphorylation and furin expression were analyzed in hepatic HepG2 cells in which HFE and transferrin receptor 2 were down-regulated or expressed, or furin activity specifically inhibited. Furin expression was also analyzed in the liver of transferrin receptor 2 null mice. RESULTS: We showed that the silencing of HFE and transferrin receptor 2 reduced both Erk phosphorylation and furin expression, that the exogenous expression of the two enhanced the induction of phosphoErk1/2 and furin by holotransferrin, but that this did not occur when the pathogenic HFE mutant C282Y was expressed. Furin, phosphoErk1/2 and phosphoSMAD1/5/8 were down-regulated also in transferrin receptor 2-null mice. Treatment of HepG2 cells with an inhibitor of furin activity caused a strong suppression of hepcidin mRNA, probably due to the inhibition of bone morphogenic protein maturation. CONCLUSIONS: The data indicate that transferrin receptor 2 and HFE are involved in holotransferrin-dependent signaling for the regulation of furin which involved Erk phosphorylation. Furin in turn may control hepcidin expression.


Assuntos
Peptídeos Catiônicos Antimicrobianos/biossíntese , Furina/metabolismo , Regulação da Expressão Gênica/fisiologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas de Membrana/metabolismo , Receptores da Transferrina/metabolismo , Transferrina/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Furina/genética , Hemocromatose/genética , Hemocromatose/metabolismo , Proteína da Hemocromatose , Células Hep G2 , Hepcidinas , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , Fosforilação/fisiologia , Receptores da Transferrina/genética , Proteínas Smad/genética , Proteínas Smad/metabolismo , Transferrina/genética
14.
Haematologica ; 95(8): 1308-16, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20534700

RESUMO

BACKGROUND: Usefulness of iron chelation therapy in myelodysplastic patients is still under debate but many authors suggest its possible role in improving survival of low-risk myelodysplastic patients. Several reports have described an unexpected effect of iron chelators, such as an improvement in hemoglobin levels, in patients affected by myelodysplastic syndromes. Furthermore, the novel chelator deferasirox induces a similar improvement more rapidly. Nuclear factor-kappaB is a key regulator of many cellular processes and its impaired activity has been described in different myeloid malignancies including myelodysplastic syndromes. DESIGN AND METHODS: We evaluated deferasirox activity on nuclear factor-kappaB in myelodysplastic syndromes as a possible mechanism involved in hemoglobin improvement during in vivo treatment. Forty peripheral blood samples collected from myelodysplastic syndrome patients were incubated with 50 muM deferasirox for 18h. RESULTS: Nuclear factor-kappaB activity dramatically decreased in samples showing high basal activity as well as in cell lines, whereas no similar behavior was observed with other iron chelators despite a similar reduction in reactive oxygen species levels. Additionally, ferric hydroxyquinoline incubation did not decrease deferasirox activity in K562 cells suggesting the mechanism of action of the drug is independent from cell iron deprivation by chelation. Finally, incubation with both etoposide and deferasirox induced an increase in K562 apoptotic rate. CONCLUSIONS: Nuclear factor-kappaB inhibition by deferasirox is not seen from other chelators and is iron and reactive oxygen species scavenging independent. This could explain the hemoglobin improvement after in vivo treatment, such that our hypothesis needs to be validated in further prospective studies.


Assuntos
Benzoatos/farmacologia , Ferro/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Espécies Reativas de Oxigênio/antagonistas & inibidores , Triazóis/farmacologia , Idoso , Idoso de 80 Anos ou mais , Apoptose/efeitos dos fármacos , Western Blotting , Deferasirox , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Citometria de Fluxo , Imunofluorescência , Humanos , Ferro/metabolismo , Quelantes de Ferro/farmacologia , Células K562 , Leucemia/metabolismo , Leucemia/patologia , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/metabolismo , Síndromes Mielodisplásicas/patologia , NF-kappa B/metabolismo , Ligação Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
15.
Am J Hematol ; 90(9): E193-4, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26088411
16.
Cells ; 9(12)2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287315

RESUMO

Cancer cells undergo considerable metabolic changes to foster uncontrolled proliferation in a hostile environment characterized by nutrient deprivation, poor vascularization and immune infiltration. While metabolic reprogramming has been recognized as a hallmark of cancer, the role of micronutrients in shaping these adaptations remains scarcely investigated. In particular, the broad electron-transferring abilities of iron make it a versatile cofactor that is involved in a myriad of biochemical reactions vital to cellular homeostasis, including cell respiration and DNA replication. In cancer patients, systemic iron metabolism is commonly altered. Moreover, cancer cells deploy diverse mechanisms to increase iron bioavailability to fuel tumor growth. Although iron itself can readily participate in redox reactions enabling vital processes, its reactivity also gives rise to reactive oxygen species (ROS). Hence, cancer cells further rely on antioxidant mechanisms to withstand such stress. The present review provides an overview of the common alterations of iron metabolism occurring in cancer and the mechanisms through which iron promotes tumor growth.


Assuntos
Ferro/metabolismo , Neoplasias/metabolismo , Animais , Antioxidantes/metabolismo , Proliferação de Células/fisiologia , Homeostase/fisiologia , Humanos , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
17.
Free Radic Biol Med ; 150: 125-135, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32101771

RESUMO

Chemoresistance represents one of the main obstacles in treating several types of cancer, including bladder and ovarian cancers, and it is characterized by an increase of cellular antioxidant potential. Nrf2 and YAP proteins play an important role in increasing chemoresistance and in inducing antioxidant enzymes. It has been reported that Ailanthone (Aila), a compound extracted from the Ailanthus Altissima, has an anticancer activity toward several cancer cell lines, including chemoresistant cell lines. We have examined the effect of Aila on proliferation, migration and expression of Nrf2 and YAP proteins in A2780 (CDDP-sensitive) and A2780/CP70 (CDDP-resistant) ovarian cancer cells. Furthermore, to clarify the mechanism of Aila action we extended our studies to sensitive and CDDP-resistant 253J-BV bladder cancer cells, which have been used in a previous study on the effect of Aila. Results demonstrated that Aila exerted an inhibitory effect on growth and colony formation of sensitive and CDDP-resistant ovarian cancer cells and reduced oriented cell migration with higher effectiveness in CDDP resistant cells. Moreover, Aila strongly reduced Nrf2 and YAP protein expression and reduced the expression of the Nrf2 target GSTA4, and the YAP/TEAD target survivin. In CDDP-resistant ovarian and bladder cancer cells the intracellular oxidative stress level was lower with respect to the sensitive cells. Moreover, Aila treatment further reduced the superoxide anion content of CDDP-resistant cells in correlation with the reduction of Nrf2 and YAP proteins. However, Aila treatment increased Nrf2 and YAP mRNA expression in all cancer cell lines. The inhibition of proteolysis by MG132, a proteasoma inhibitor, restored Nrf2 and YAP protein expressions, suggesting that the Aila effect was at post-translational level. In accordance with this observation, we found an increase of the Nrf2 inhibitor Keap1, a reduction of p62/SQSTM1, a Nrf2 target which leads Keap1 protein to the autophagic degradation, and a reduction of P-YAP. Moreover, UCHL1 deubiquitinase expression, which was increased in bladder and ovarian resistant cells, was down-regulated by Aila treatment. In conclusion we demonstrated that Aila can reduce proliferation and migration of cancer cells through a mechanism involving a post translational reduction of Nrf2 and YAP proteins which, in turn, entailed an increase of oxidative stress particularly in the chemoresistant lines.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Neoplasias da Bexiga Urinária , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Estresse Oxidativo , Quassinas , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética
18.
PLoS One ; 15(10): e0240632, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33091040

RESUMO

The hemoglobin disorders are the most common single gene disorders in the world. Previous studies have suggested that they are deeply geographically structured and a variety of genetic determinants influences different clinical phenotypes between patients inheriting identical ß-globin gene mutations. In order to get new insights into the heterogeneity of hemoglobin disorders, we investigated the molecular variations on nuclear genes (i.e. HBB, HBG2, BCL11A, HBS1L and MYB) and mitochondrial DNA control region. This pilot study was carried out on 53 patients belonging to different continents and molecularly classified in 4 subgroup: ß-thalassemia (ß+/ß+, ß0/ß0 and ß+/ß0)(15), sickle cell disease (HbS/HbS)(20), sickle cell/ß-thalassemia (HbS/ß+ or HBS/ß0)(10), and non-thalassemic compound heterozygous (HbS/HbC, HbO-Arab/HbC)(8). This comprehensive phylogenetic analysis provided a clear separation between African and European patients either in nuclear or mitochondrial variations. Notably, informing on the phylogeographic structure of affected individuals, this accurate genetic stratification, could help to optimize the diagnostic algorithm for patients with uncertain or unknown origin.


Assuntos
Anemia Falciforme/genética , Hemoglobinopatias/genética , Proteínas Nucleares/genética , Talassemia beta/genética , DNA Mitocondrial/genética , Feminino , Hemoglobina Fetal/genética , Proteínas de Ligação ao GTP/genética , Variação Genética/genética , Haplótipos/genética , Hemoglobina Falciforme/genética , Hemoglobinopatias/classificação , Hemoglobinopatias/epidemiologia , Hemoglobinopatias/patologia , Humanos , Masculino , Projetos Piloto , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Repressoras/genética , Globinas beta/genética
19.
Free Radic Biol Med ; 141: 205-219, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31207288

RESUMO

The transcriptional regulator YAP plays an important role in cancer progression and is negatively controlled by the Hippo pathway. YAP is frequently overexpressed in human cancers, including bladder cancer. Interestingly, YAP expression and activity can be inhibited by pro-oxidant conditions; moreover, YAP itself can also affect the cellular redox status through multiple mechanisms. 4-Hydroxynonenal (HNE), the most intensively studied end product of lipid peroxidation, is a pro-oxidant agent able to deplete GSH and has an anti-tumoral effect by affecting multiple signal pathways, including the down-regulation of oncogene expressions. These observations prompted us to investigate the effect of HNE on YAP expression and activity. We demonstrated that HNE inhibited YAP expression and its target genes in bladder cancer cells through a redox-dependent mechanism. Moreover, the YAP down-regulation was accompanied by an inhibition of proliferation, migration, invasion, and angiogenesis, as well as by an accumulation of cells in the G2/M phase of cell cycle and by an induction of apoptosis. We also established the YAP role in inhibiting cell viability and inducing apoptosis in HNE-treated cells by using an expression vector for YAP. Furthermore, we identified a post-translational mechanism for the HNE-induced YAP expression inhibition, involving an increase of YAP phosphorylation and ubiquitination, leading to proteasomal degradation. Our data established that HNE can post-translationally down-regulate YAP through a redox-dependent mechanism and that this modulation can contribute to determining the specific anti-cancer effects of HNE.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aldeídos/farmacologia , Regulação Neoplásica da Expressão Gênica , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Células Endoteliais da Veia Umbilical Humana , Humanos , Invasividade Neoplásica , Neovascularização Patológica , Oncogenes , Oxirredução , Fosfoproteínas/metabolismo , Transdução de Sinais , Neoplasias da Bexiga Urinária/genética , Proteínas de Sinalização YAP
20.
Nat Metab ; 1(1): 111-124, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30886999

RESUMO

Transferrin receptor 2 (Tfr2) is mainly expressed in the liver and controls iron homeostasis. Here, we identify Tfr2 as a regulator of bone homeostasis that inhibits bone formation. Mice lacking Tfr2 display increased bone mass and mineralization independent of iron homeostasis and hepatic Tfr2. Bone marrow transplantation experiments and studies of cell-specific Tfr2 knockout mice demonstrate that Tfr2 impairs BMP-p38MAPK signaling and decreases expression of the Wnt inhibitor sclerostin specifically in osteoblasts. Reactivation of MAPK or overexpression of sclerostin rescues skeletal abnormalities in Tfr2 knockout mice. We further show that the extracellular domain of Tfr2 binds BMPs and inhibits BMP-2-induced heterotopic ossification by acting as a decoy receptor. These data indicate that Tfr2 limits bone formation by modulating BMP signaling, possibly through direct interaction with BMP either as a receptor or as a co-receptor in a complex with other BMP receptors. Finally, the Tfr2 extracellular domain may be effective in the treatment of conditions associated with pathological bone formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA