RESUMO
Bronchopulmonary dysplasia (BPD) is a major complication of preterm birth that leads to lifelong respiratory morbidity. The EPICure study has investigated the longitudinal health outcomes of infants born extremely preterm (EP; <26â weeks gestation). Our aim was to characterise the airway microbiome in young adults born extremely preterm, with and without neonatal BPD, in comparison to matched term-born controls.Induced sputum was collected from 92 young adults aged 19â years (51 EP and 41 controls). Typical respiratory pathogens were detected using quantitative PCR. 16S rRNA gene sequencing was completed on 74 samples (29 EP with BPD; 9 EP without BPD; and 36 controls).The preterm group with BPD had the least diverse bacterial communities. The relative abundance of Bacteriodetes, particularly Prevotella melaninogenica was significantly lower in the preterm group compared to controls. This decline was balanced by a nonsignificant increase in Firmicutes. Total Prevotella relative abundance correlated with forced expiratory volume in 1â s z-score (ρ=0.272; p<0.05). Typical respiratory pathogen loads and prevalence were similar between groups.In conclusion, extremely preterm birth is associated with a significant dysbiosis in airway microbiome in young adulthood regardless of neonatal BPD status. This is characterised by a shift in the community composition away from Bacteriodetes as manifested in a significant drop in Prevotella relative abundance.
Assuntos
Displasia Broncopulmonar/microbiologia , Disbiose/complicações , Lactente Extremamente Prematuro , Microbiota , Sistema Respiratório/microbiologia , Bactérias/classificação , Estudos de Casos e Controles , Disbiose/genética , Feminino , Seguimentos , Volume Expiratório Forçado , Humanos , Recém-Nascido , Masculino , Testes de Função Respiratória , Espirometria , Sobreviventes , Adulto JovemRESUMO
Bedaquiline (B), pretomanid (Pa) and linezolid (L) are key components of new regimens for treating rifampicin-resistant tuberculosis (TB). However, there is limited information on the global prevalence of resistance to these drugs and the impact of resistance on treatment outcomes. Mycobacterium tuberculosis (MTB) phenotypic drug susceptibility and whole-genome sequence (WGS) data, as well as patient profiles from 4 pretomanid-containing trials-STAND, Nix-TB, ZeNix and SimpliciTB-were used to investigate the rates of baseline resistance (BR) and acquired resistance (AR) to BPaL drugs, as well as their genetic basis, risk factors and impact on treatment outcomes. Data from >1,000 TB patients enrolled from 2015 to 2020 in 12 countries was assessed. We identified 2 (0.3%) participants with linezolid BR. Pretomanid BR was also rare, with similar rates across TB drug resistance types (0-2.1%). In contrast, bedaquiline BR was more prevalent among participants with highly resistant TB or longer prior treatment histories than those with newly diagnosed disease (5.2-6.3% vs. 0-0.3%). Bedaquiline BR was a risk factor for bacteriological failure or relapse in Nix-TB/ZeNix; 3/12 (25%, 95% CI 5-57%) participants with vs. 6/185 (3.2%, 1.2-6.9%) without bedaquiline BR. Across trials, we observed no linezolid AR, and only 3 cases of bedaquiline AR, including 2 participants with poor adherence. Overall, pretomanid AR was also rare, except in ZeNix patients with bedaquiline BR. WGS analyses revealed novel mutations in canonical resistant genes and, in 7 MTB isolates, the genetic determinants could not be identified. The overall low rates of BR to linezolid and pretomanid, and to a lesser extent to bedaquiline, observed in the pretomanid trials are in support of the worldwide implementation of BPaL-based regimens. Similarly, the overall low AR rates observed suggest BPaL drugs are better protected in the regimens trialed here than in other regimens combining bedaquiline with more, but less effective drugs.
RESUMO
The management of many chronic lung diseases involves multiple antibiotic prescriptions either to treat acute exacerbations or as prophylactic therapy to reduce the frequency of exacerbations and improve patients' quality of life. AIM: To investigate the effects of antibiotics on the homeostasis of bacterial communities in the airways, and how this may contribute to antimicrobial resistance (AMR) among respiratory pathogens and microbiota. METHODS: Within an observational cohort study, sputum was collected from 84 patients with chronic obstructive pulmonary disease and/or bronchiectasis at stable state: 47 were receiving antibiotic prophylaxis therapy. V3-V4 16S-rRNA sequencing on Illumina MiSeq, quantitative PCR for typical respiratory pathogens, bacteriology cultures and antimicrobial susceptibility testing of sputum isolates, resistome analysis on a subset of 17 sputum samples using MinION metagenomics sequencing were performed. FINDING: The phylogenetic α-diversity and the total bacterial density in sputum were significantly lower in patients receiving prophylactic antibiotics (p=0.014 and 0.029, respectively). Antibiotic prophylaxis was associated with significantly lower relative abundance of respiratory pathogens such as Pseudomonas aeruginosa, Moraxella catarrhalis and members of family Enterobacteriaceae in the airway microbiome, but not Haemophilus influenzae and Streptococcus pneumoniae. No major definite directional shifts in the microbiota composition were identified with prophylactic antibiotic use at the cohort level. Surveillance of AMR and resistome analysis revealed a high frequency of resistance to macrolide and tetracycline in the cohort. AMR expressed by pathogenic bacterial isolates was associated with antibiotics prescribed as 'rescue packs' for prompt initiation of self-treatment of exacerbations (Spearman's rho=0.408, p=0.02). CONCLUSIONS: Antibiotic prophylactic therapy suppresses recognised pathogenic bacteria in the sputum of patients with chronic lung disease. The use of antibiotic rescue packs may be driving AMR in this cohort rather than prophylactic antibiotics.
Assuntos
Microbiota , Doença Pulmonar Obstrutiva Crônica , Humanos , Antibacterianos/uso terapêutico , Qualidade de Vida , Filogenia , Doença Pulmonar Obstrutiva Crônica/genéticaRESUMO
BACKGROUND: Long-term antiretroviral therapy (ART) enables people living with HIV (PLW-HIV) to be healthier and live longer; though they remain at greater risk of pneumonia and chronic lung disease than the general population. Lung microbial dysbiosis has been shown to contribute to respiratory disease. METHODS: 16S-rRNA gene sequencing on the Miseq-platform and qPCR for typical respiratory pathogens were performed on sputum samples collected from 64 PLW-HIV (median blood CD4 count 676 cells/µL) and 38 HIV-negative participants. FINDING: Richness and α-diversity as well as the relative-abundance (RA) of the major taxa (RA>1%) were similar between both groups. In unweighted-Unifrac ß-diversity, the samples from PLW-HIV showed greater diversity, in contrast to the HIV negative samples which clustered together. Gut bacterial taxa such as Bilophila and members of Enterobacteriaceae as well as pathogenic respiratory taxa (Staphylococcus, Pseudomonas and Klebsiella) were significantly more frequent in PLW-HIV and almost absent in the HIV-negative group. Carriage of these taxa was correlated with the length of time between HIV diagnosis and initiation of ART (Spearman-rho=0·279, p=0·028). INTERPRETATION: Although the core airway microbiome was indistinguishable between PLW-HIV on effective ART and HIV-negative participants, PLW-HIV's respiratory microbiome was enriched with potential respiratory pathogens and gut bacteria. The observed differences in PLW-HIV may be due to HIV infection altering the local lung microenvironment to be more permissive to harbour pathogenic bacteria that could contribute to respiratory comorbidities. Prompt start of ART for PLW-HIV may reduce this risk.