Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Neurosci ; 60(5): 5000-5018, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39087621

RESUMO

Fibroblast growth factor receptor 1 (FGFR1) is a widely expressed, membrane-bound receptor that transduces extracellular signals from FGF ligands and cadherins, resulting in intracellular signals influencing cellular growth, proliferation, calcium, and transcription. FGF21 and FGF2 stimulate the proliferation of tanycytes, specialized radial astrocytes along the ventricle of the hypothalamus, and influence metabolism. Tanycytes are in a privileged position between the cerebrospinal fluid, the blood supply in the median eminence, and neurons within nuclei in the hypothalamus. The effect of FGFR1 signaling upon tanycyte morphology and metabolism was examined in adult mice with conditional deletion of the Fgfr1 gene using the Fgfr1flox/flox; Nestin-Cre+ line. Loss of Fgfr1 resulted in shorter ß tanycytes along the medial eminence. Control Fgfr1flox/flox littermates and Fgfr1flox/flox, Nestin-Cre+ (Fgfr1 cKO) knockout mice were placed on a 1-month long high-fat diet (HFD) or a normal-fat diet (NFD), to investigate differences in body homeostasis and tanycyte morphology under an obesity inducing diet. We found that FGFR1 is a vital contributor to tanycyte morphology and quantity and that it promotes stem cell maintenance in the hypothalamus and hippocampal dentate gyrus. The Fgfr1 cKO mice developed impaired tolerance to a glucose challenge test on a HFD without gaining more weight than control mice. The combination of HFD and loss of Fgfr1 gene resulted in altered ß and α tanycyte morphology, and reduced stem cell numbers along the third ventricle of the hypothalamus and hippocampus.


Assuntos
Proliferação de Células , Dieta Hiperlipídica , Células Ependimogliais , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Animais , Masculino , Camundongos , Proliferação de Células/fisiologia , Células Ependimogliais/metabolismo , Hipotálamo/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Obesidade/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Feminino
2.
J Biol Educ ; 58(1): 202-208, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426212

RESUMO

Live cell imaging is a standard technique in experimental biology that enables the observation of isolated cells and tissue slices in real time; and the testing of cellular responses to changes in buffer composition. However, most live cell imaging devices require the use of dedicated microscopes and/or specialized stage adaptors, and come at a reasonably high cost. We employed 3D printing technology to create a low-cost imaging chamber with side ports to exchange fluids, to be used on upright microscopes. The chamber increased the functionality of a standard upright epifluorescent microscope to allow dynamic, real-time calcium imaging of cultured hypothalamic astrocytes from mice, and to test the effects of ATP stimulation upon calcium signaling. It was also used on slices obtained from mouse brain using a brain matrix slicer. The advantages of this chamber include a very simple design that can be used with upright epifluorescence microscopes, does not require any special stage adaptor, and includes ports to permit fluid exchange during imaging. This chamber is ideal for educational settings with undergraduate laboratories that do not have access to dedicated inverted fluorescent microscopes for tissue culture experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA