Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1794(8): 1251-8, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19393346

RESUMO

The peptide-derived glyoxal inhibitor Z-Ala-Ala-Phe-glyoxal has been shown to be approximately 10 fold more effective as an inhibitor of subtilisin than Z-Ala-Pro-Phe-glyoxal. Signals at 107.2 ppm and 200.5 ppm are observed for the glyoxal keto and aldehyde carbons of the inhibitor bound to subtilisin, showing that the glyoxal keto and aldehyde carbons are sp(3) and sp(2) hybridised respectively. The signal at 107.2 ppm from the carbon atom attached to the hemiketal oxyanion is formed in a slow exchange process that involves the dehydration of the glyoxal aldehyde carbon. Two additional signals are observed one at 108.2 ppm and the other at 90.9 ppm for the glyoxal keto and aldehyde carbons respectively at pHs 6-8 demonstrating that subtilisin forms an additional tetrahedral adduct with Z-Ala-Ala-Phe-glyoxal in which both the glyoxal keto and aldehyde carbons are sp(3) hybridised. For the first time we can quantify oxyanion stabilisation in subtilisin. We conclude that oxyanion stabilisation is more effective in subtilisin than in chymotrypsin. Using (1)H-NMR we show that the binding of Z-Ala-Ala-Phe-glyoxal to subtilisin raises the pK(a) of the imidazolium ion of the active site histidine residue promoting oxyanion stabilisation. The mechanistic significance of these results is discussed.


Assuntos
Ânions/química , Glioxal/análogos & derivados , Oligopeptídeos/farmacologia , Subtilisina/metabolismo , Isótopos de Carbono , Glioxal/química , Glioxal/farmacologia , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Ressonância Magnética Nuclear Biomolecular , Oligopeptídeos/química , Serina Endopeptidases/metabolismo , Subtilisinas/antagonistas & inibidores
3.
Biochemistry ; 46(39): 11205-15, 2007 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-17824620

RESUMO

Z-Ala-Ala-Phe-glyoxal (where Z is benzyloxycarbonyl) has been shown to be a competitive inhibitor of pepsin with a Ki = 89 +/- 24 nM at pH 2.0 and 25 degrees C. Both the ketone carbon (R13COCHO) and the aldehyde carbon (RCO13CHO) of the glyoxal group of Z-Ala-Ala-Phe-glyoxal have been 13C-enriched. Using 13C NMR, it has been shown that when the inhibitor is bound to pepsin, the glyoxal keto and aldehyde carbons give signals at 98.8 and 90.9 ppm, respectively. This demonstrates that pepsin binds and preferentially stabilizes the fully hydrated form of the glyoxal inhibitor Z-Ala-Ala-Phe-glyoxal. From 13C NMR pH studies with glyoxal inhibitor, we obtain no evidence for its hemiketal or hemiacetal hydroxyl groups ionizing to give oxyanions. We conclude that if an oxyanion is formed its pKa must be >8.0. Using 1H NMR, we observe four hydrogen bonds in free pepsin and in pepsin/Z-Ala-Ala-Phe-glyoxal complexes. In the pepsin/pepstatin complex an additional hydrogen bond is formed. We examine the effect of pH on hydrogen bond formation, but we do not find any evidence for low-barrier hydrogen bond formation in the inhibitor complexes. We conclude that the primary role of hydrogen bonding to catalytic tetrahedral intermediates in the aspartyl proteases is to correctly orientate the tetrahedral intermediate for catalysis.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Inibidores Enzimáticos/farmacologia , Glioxal/farmacologia , Espectroscopia de Ressonância Magnética/métodos , Pepsina A/metabolismo , Ácido Aspártico Endopeptidases/química , Catálise/efeitos dos fármacos , Inibidores Enzimáticos/química , Glioxal/química , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Cinética , Modelos Químicos , Estrutura Molecular , Pepsina A/antagonistas & inibidores , Pepsina A/química , Pepstatinas/química , Pepstatinas/metabolismo , Temperatura
4.
J Biol Chem ; 282(11): 7852-61, 2007 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-17213185

RESUMO

Benzyloxycarbonyl (Z)-Ala-Pro-Phe-glyoxal and Z-Ala-Ala-Phe-glyoxal have both been shown to be inhibitors of alpha-chymotrypsin with minimal Ki values of 19 and 344 nM, respectively, at neutral pH. These Ki values increased at low and high pH with pKa values of approximately 4.0 and approximately 10.5, respectively. By using surface plasmon resonance, we show that the apparent association rate constant for Z-Ala-Pro-Phe-glyoxal is much lower than the value expected for a diffusion-controlled reaction. 13C NMR has been used to show that at low pH the glyoxal keto carbon is sp3-hybridized with a chemical shift of approximately 100.7 ppm and that the aldehyde carbon is hydrated with a chemical shift of approximately 91.6 ppm. The signal at approximately 100.7 ppm is assigned to the hemiketal formed between the hydroxy group of serine 195 and the keto carbon of the glyoxal. In a slow exchange process controlled by a pKa of approximately 4.5, the aldehyde carbon dehydrates to give a signal at approximately 205.5 ppm and the hemiketal forms an oxyanion at approximately 107.0 ppm. At higher pH, the re-hydration of the glyoxal aldehyde carbon leads to the signal at 107 ppm being replaced by a signal at 104 ppm (pKa approximately 9.2). On binding either Z-Ala-Pro-Phe-glyoxal or Z-Ala-Ala-Phe-glyoxal to alpha-chymotrypsin at 4 and 25 degrees C, 1H NMR is used to show that the binding of these glyoxal inhibitors raises the pKa value of the imidazolium ion of histidine 57 to a value of >11 at both 4 and 25 degrees C. We discuss the mechanistic significance of these results, and we propose that it is ligand binding that raises the pKa value of the imidazolium ring of histidine 57 allowing it to enhance the nucleophilicity of the hydroxy group of the active site serine 195 and lower the pKa value of the oxyanion forming a zwitterionic tetrahedral intermediate during catalysis.


Assuntos
Quimotripsina/química , Glioxal/química , Ligação de Hidrogênio , Animais , Sítios de Ligação , Catálise , Bovinos , Histidina/química , Concentração de Íons de Hidrogênio , Íons , Espectroscopia de Ressonância Magnética , Serina/química , Ressonância de Plasmônio de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA