Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 62(11): 3941-55, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21511904

RESUMO

The maintenance in the long run of a positive carbon balance under very low irradiance is a prerequisite for survival of tree seedlings below the canopy or in small gaps in a tropical rainforest. To provide a quantitative basis for this assumption, experiments were carried out to determine whether construction cost (CC) and payback time for leaves and support structures, as well as leaf life span (i) differ among species and (ii) display an irradiance-elicited plasticity. Experiments were also conducted to determine whether leaf life span correlates to CC and payback time and is close to the optimal longevity derived from an optimization model. Saplings from 13 tropical tree species were grown under three levels of irradiance. Specific-CC was computed, as well as CC scaled to leaf area at the metamer level. Photosynthesis was recorded over the leaf life span. Payback time was derived from CC and a simple photosynthesis model. Specific-CC displayed only little interspecific variability and irradiance-elicited plasticity, in contrast to CC scaled to leaf area. Leaf life span ranged from 4 months to >26 months among species, and was longest in seedlings grown under lowest irradiance. It was always much longer than payback time, even under the lowest irradiance. Leaves were shed when their photosynthesis had reached very low values, in contrast to what was predicted by an optimality model. The species ranking for the different traits was stable across irradiance treatments. The two pioneer species always displayed the smallest CC, leaf life span, and payback time. All species displayed a similar large irradiance-elicited plasticity.


Assuntos
Folhas de Planta/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Árvores/efeitos da radiação , Carbono/metabolismo , Guiana Francesa , Luz , Fotossíntese , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Plântula/efeitos da radiação , Especificidade da Espécie , Árvores/fisiologia , Clima Tropical
2.
Ecol Lett ; 13(11): 1338-47, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20807232

RESUMO

Cross-species analyses of plant functional traits have shed light on factors contributing to differences in performance and distribution, but to date most studies have focused on either leaves or stems. We extend these tissue-specific analyses of functional strategy towards a whole-plant approach by integrating data on functional traits for 13 448 leaves and wood tissues from 4672 trees representing 668 species of Neotropical trees. Strong correlations amongst traits previously defined as the leaf economics spectrum reflect a tradeoff between investments in productive leaves with rapid turnover vs. costly physical leaf structure with a long revenue stream. A second axis of variation, the 'stem economics spectrum', defines a similar tradeoff at the stem level: dense wood vs. high wood water content and thick bark. Most importantly, these two axes are orthogonal, suggesting that tradeoffs operate independently at the leaf and at the stem levels. By simplifying the multivariate ecological strategies of tropical trees into positions along these two spectra, our results provide a basis to improve global vegetation models predicting responses of tropical forests to global change.


Assuntos
Modelos Teóricos , Árvores/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Clima Tropical
3.
Nat Ecol Evol ; 2(11): 1735-1744, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30349095

RESUMO

Human societies depend on an Earth system that operates within a constrained range of nutrient availability, yet the recent trajectory of terrestrial nitrogen (N) availability is uncertain. Examining patterns of foliar N concentrations and isotope ratios (δ15N) from more than 43,000 samples acquired over 37 years, here we show that foliar N concentration declined by 9% and foliar δ15N declined by 0.6-1.6‰. Examining patterns across different climate spaces, foliar δ15N declined across the entire range of mean annual temperature and mean annual precipitation tested. These results suggest declines in N supply relative to plant demand at the global scale. In all, there are now multiple lines of evidence of declining N availability in many unfertilized terrestrial ecosystems, including declines in δ15N of tree rings and leaves from herbarium samples over the past 75-150 years. These patterns are consistent with the proposed consequences of elevated atmospheric carbon dioxide and longer growing seasons. These declines will limit future terrestrial carbon uptake and increase nutritional stress for herbivores.


Assuntos
Ecossistema , Eutrofização , Nitrogênio/metabolismo , Plantas/metabolismo , Isótopos de Nitrogênio/análise
4.
Tree Physiol ; 25(9): 1127-37, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15996956

RESUMO

Variability of leaf traits related to photosynthesis was assessed in seedlings from 14 tree species growing in the tropical rain forest of French Guiana. Leaf photosynthetic capacity (maximum rate of carboxylation and maximum rate of electron transport) was estimated by fitting a biochemical model of photosynthesis to response curves of net CO2 assimilation rate versus intercellular CO2 mole fraction. Leaf morphology described by leaf mass per unit leaf area (LMA), density and thickness, as well as area- and mass-based nitrogen (N) and carbon (C) concentrations, were recorded on the same leaves. Large interspecific variability was detected in photosynthetic capacity as well as in leaf structure and leaf N and C concentrations. No correlation was found between leaf thickness and density. The correlations between area- and mass-based leaf N concentration and photosynthetic capacity were poor. Conversely, the species differed greatly in relative N allocation to carboxylation and bioenergetics. Principal component analysis (PCA) revealed that, of the recorded traits, only the computed fraction of total leaf N invested in photosynthesis was tightly correlated to photosynthetic capacity. We also used PCA to test to what extent species with similar shade tolerances displayed converging leaf traits related to photosynthesis. No clear-cut ranking could be detected among the shade-tolerant groups, as confirmed by a one-way ANOVA. We conclude that the large interspecific diversity in photosynthetic capacity was mostly explained by differences in the relative allocation of N to photosynthesis and not by leaf N concentration, and that leaf traits related to photosynthetic capacity did not discriminate shade-tolerance ranking of these tropical tree species.


Assuntos
Luz , Nitrogênio/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Chuva , Árvores/metabolismo , Clima Tropical , Carbono/metabolismo , Escuridão , Ecossistema , Metabolismo Energético , Fotossíntese/efeitos da radiação , Folhas de Planta/efeitos da radiação , Especificidade da Espécie , Árvores/efeitos da radiação
5.
Plant Physiol Biochem ; 72: 169-77, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23727287

RESUMO

Eperua falcata (Aublet), a late-successional species in tropical rainforest and one of the most abundant tree in French Guiana, has developed an original strategy concerning N-acquisition by largely preferring nitrate, rather than ammonium (H. Schimann, S. Ponton, S. Hättenschwiler, B. Ferry, R. Lensi, A.M. Domenach, J.C. Roggy, Differing nitrogen use strategies of two tropical rainforest tree species in French Guiana: evidence from (15)N natural abundance and microbial activities, Soil Biol. Biochem. 40 (2008) 487-494). Given the preference of this species for nitrate, we hypothesized that root exudates would promote nitrate availability by (a) enhancing nitrate production by stimulating ammonium oxidation or (b) minimizing nitrate losses by inhibiting denitrification. Root exudates were collected in situ in monospecific planted plots. The phytochemical analysis of these exudates and of several of their corresponding root extracts was achieved using UHPLC/DAD/ESI-QTOF and allowed the identification of diverse secondary metabolites belonging to the flavonoid family. Our results show that (i) the distinct exudation patterns observed are related to distinct root morphologies, and this was associated with a shift in the root flavonoid content, (ii) a root extract representative of the diverse compounds detected in roots showed a significant and selective metabolic inhibition of isolated denitrifiers in vitro, and (iii) in soil plots the abundance of nirK-type denitrifiers was negatively affected in rhizosphere soil compared to bulk. Altogether this led us to formulate hypothesis concerning the ecological role of the identified compounds in relation to N-acquisition strategy of this species.


Assuntos
Exsudatos de Plantas/metabolismo , Raízes de Plantas/metabolismo , Árvores/metabolismo , Nitrogênio/metabolismo
6.
Ann Bot ; 92(1): 97-105, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12824071

RESUMO

Architectural analyses of temperate tree species using a chronological approach suggest that the expression of epicormic branches is closely related to low growth rates in the axes that make up the branching system. Therefore, sole consideration of epicormic criteria may be sufficient to identify trees with low secondary growth levels or with both low primary and secondary growth levels. In a tropical tree such as Dicorynia guianensis (basralocus), where chronological studies are difficult, this relationship could be very useful as an easily accessible indicator of growth potentials. A simple method of architectural tree description was used to characterize the global structure of more than 1650 basralocus trees and to evaluate their growth level. Measurements of simple growth characters [height, basal diameter, internode length of submittal part (top of the main axis of the tree)] and the observation of four structural binary descriptors on the main stem (presence of sequential branches and young epicormic branches, state of the submittal part, global orientation), indicated that epicormic branch formation is clearly related to a decrease in length of the successive growth units of the main stem. Analysis of height vs. diameter ratios among different tree subgroups, with and without epicormic branching, suggested that trees with epicormic branches generally have a low level of secondary growth compared with primary growth.


Assuntos
Árvores/anatomia & histologia , Árvores/crescimento & desenvolvimento , Brotos de Planta/anatomia & histologia , Brotos de Planta/crescimento & desenvolvimento , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA