Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 60(5): 3345-3354, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33570929

RESUMO

The two La2Pd3Ge5 and Nd2Pd3Ge5 compounds, crystallizing in the oI40-U2Co3Ge5 crystal structure, were targeted for analysis of their chemical bonding and physical properties. The compounds of interest were obtained by arc melting and characterized by differential thermal analysis, scanning electron microscopy, and X-ray diffraction both on powder and on a single crystal (for the La analogue), to ensure the high quality of the samples and accurate crystallographic data. Chemical bonding was studied by analyzing the electronic structure and effective QTAIM charges of La2Pd3Ge5. A significant charge transfer mainly occurs from La to Pd so that Ge species assume tiny negative charges. This result, together with the -(I)COHP analysis, suggests that, in addition to the expected homopolar Ge bonds within zigzag chains, heteropolar interactions between Ge and the surrounding La and Pd occur with multicenter character. Covalent La-Pd interactions increase the complexity of chemical bonding, which could not be adequately described by the simplified, formally obeyed, Zintl-Klemm scheme. Electric resistivity, specific heat, magnetization, and magnetic susceptibility as a function of temperature indicate for both compounds a metallic-like behavior. For Nd2Pd3Ge5, two low-temperature phase transitions are detected, leading to an antiferromagnetic ground state.

2.
Phys Chem Chem Phys ; 17(3): 1716-27, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25463306

RESUMO

Tetrahedrite compounds Cu(12-x)Mn(x)Sb4S13 (0 ≤x≤ 1.8) were prepared by solid state synthesis. A detailed crystal structure analysis of Cu10.6Mn1.4Sb4S13 was performed by single crystal X-ray diffraction (XRD) at 100, 200 and 300 K confirming the noncentrosymmetric structure (space group I4[combining macron]3m) of a tetrahedrite. The large atomic displacement parameter of the Cu2 atoms was described by splitting the 12e site into a partially and randomly occupied 24g site (Cu22) in addition to the regular 12e site (Cu21), suggesting a mix of dynamic and static off-plane Cu2 atom disorder. Rietveld powder XRD pattern and electron probe microanalysis revealed that all the Mn substituted samples showed a single tetrahedrite phase. The electrical resistivity increased with increasing Mn due to substitution of Mn(2+) at the Cu(1+) site. The positive Seebeck coefficient for all samples indicates that the dominant carriers are holes. Even though the thermal conductivity decreased as a function of increasing Mn, the thermoelectric figure of merit ZT decreased, because the decrease of the power factor is stronger than the decrease of the thermal conductivity. The maximum ZT = 0.76 at 623 K is obtained for Cu12Sb4S13. The coefficient of thermal expansion 13.5 ± 0.1 × 10(-6) K(-1) is obtained in the temperature range from 460 K to 670 K for Cu10.2Mn1.8Sb4S13. The Debye temperature, Θ(D) = 244 K for Cu10.2Mn1.8Sb4S13, was estimated from an evaluation of the elastic properties. The effective paramagnetic moment 7.45 µB/f.u. for Cu10.2Mn1.8Sb4S13 is fairly consistent with a high spin 3d(5) ground state of Mn.

3.
Phys Chem Chem Phys ; 17(5): 3715-22, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25556702

RESUMO

The best p-type skutterudites with ZT > 1.1 so far are didymium (DD) filled, Fe/Co substituted, Sb-based skutterudites. DD0.68Fe3CoSb12 was prepared using an annealing-reacting-melting-quenching technique followed by ball milling and hot pressing. After severe plastic deformation via high-pressure torsion (HPT), no phase changes but particular structural variations were achieved, leading to modified transport properties with higher ZT values. Although after measurement-induced heating some of the HPT induced defects were annealed out, a still attractive ZT-value was preserved. In this paper we focus on explanations for these changes via TEM investigations, Raman spectroscopy and texture measurements. The grain sizes and dislocation densities, evaluated from TEM images, showed that (i) the majority of cracks generated during high-pressure torsion are healed during annealing, leaving only small pores, that (ii) the grains have grown, and that (iii) the dislocation density is decreased. While Raman spectra indicate that after HPT processing and annealing the vibration modes related to the shorter Sb-Sb bonds in the Sb4 rings are more affected than those related to the longer Sb-Sb bonds, almost no visible changes were observed in the pole intensity and/or orientation.

4.
Dalton Trans ; 53(2): 715-723, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38086681

RESUMO

Uniform dispersion of nanosized secondary phases in bulk thermoelectric materials has proven to be an effective strategy to reduce the lattice part of thermal conductivity and improve the thermoelectric efficiency. In this work, reduced graphene oxide (rGO) was uniformly dispersed in the In0.5Co4Sb12 bulk material by ultrasonication. The formation of impurity phases of InSb and CoSb2 in the In-filled Co4Sb12 is inevitable, as observed from XRD and EPMA analyses. The Raman spectra of the nanocomposites showed broad peaks suggesting phonon softening and additional peaks corresponding to rGO. Electron transport was not affected by rGO addition, resulting in little change in the electrical resistivity and Seebeck coefficient. The lattice thermal conductivity of the bulk material was significantly reduced by the addition of a small amount of rGO, primarily attributed to the interface scattering of phonons. Hence, the highest zT of ∼1.53 at 773 K was achieved for the In0.5Co4Sb12/0.25 vol% rGO composite in the temperature range from 723 K to 773 K.

5.
Dalton Trans ; 49(44): 15883-15894, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33156323

RESUMO

Filling the voids of cage forming compounds with loosely bound electropositive elements and by incorporating nano-sized secondary phases are promising approaches to enhance the thermoelectric figure of merit of these materials. Hence, in this work, by combining these two approaches-inserting In into the voids of skutterudite Co4Sb12 as well as dispersing nanoparticles (GaSb)-we have synthesized various samples via ball-milling and spark plasma sintering. InSb as the secondary phase of the matrix, mixed with GaSb, forms the solid solution Ga1-xInxSb. Nanocrystalline grains together with a few larger grains (10-30 µm) are found to be spread in In0.2Co4Sb12. The former is comprised of either InSb, GaSb or Ga1-xInxSb. Because of their identical space group and similar lattice parameters, InSb, GaSb and Ga1-xInxSb could not be detected separately in EBSD. High resolution transmission electron microscopy (HRTEM) was used to resolve different phases, which showed GaSb grains of size ∼10-30 nm and InSb grains of size ∼30-100 nm. Scattering of charge carriers at the interfaces of InSb, GaSb and Ga1-xInxSb as well as the matrix phases increased both the electrical resistivity and Seebeck coefficient. The multi-scale size distribution of grains, of both the matrix phase and the secondary phases, scattered phonons within a broad wavelength range, resulting in very low lattice thermal conductivities. As a result, an enhanced figure of merit of 1.4 was achieved for the (GaSb)0.1 + In0.2Co4Sb12 nanocomposite at 773 K.

6.
ACS Appl Mater Interfaces ; 12(43): 48729-48740, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33073561

RESUMO

The thermoelectric efficiency of skutterudite materials can be improved by lowering the lattice thermal conductivity via the uniform dispersion of a nanosized second phase in the matrix of filled Co4Sb12. In this work, nanocomposites of Ba0.3Co4Sb12 and InSb were synthesized using ball-milling and spark plasma sintering. The thermoelectric transport properties were studied from 4.2 to 773 K. The InSb nanoparticles of ∼20 nm were found to be dispersed in the Ba0.3Co4Sb12 grains with a few larger grains of about 10 µm due to the agglomeration of the InSb nanoparticles. The +2 oxidation state of Ba in Co4Sb12 resulted in a low electrical resistivity, ρ, value of the matrix. The enhancement of the Seebeck coefficient, S, and the electrical resistivity values of Ba0.3Co4Sb12 with the addition of InSb can be credited to the energy-filtering effect of electrons with low energy at the interfaces. The power factor of the composites could not be enhanced compared to the matrix because of the very high ρ value. A minimum possible lattice thermal conductivity (0.45 W/m·K at 773 K) was achieved due to the combined effect of rattling of Ba atoms in the voids and enhanced phonon scattering at the interfaces induced by nanosized InSb particles. As a result, the (InSb)0.15 + Ba0.3Co4Sb12 composite exhibited improved thermoelectric properties with the highest zT of 1.4 at 773 K and improved mechanical properties with a higher hardness, higher Young's modulus, and lower brittleness.

7.
RSC Adv ; 9(37): 21451-21459, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35521323

RESUMO

The temperature and phase stability of p-type skutterudites, DD0.7Fe3CoSb12, manufactured via various preparation techniques, all exhibiting a high ZT-level, have been studied by means of thermal analysis and Knudsen effusion mass spectrometry. The results from phase transformation measurements and characteristics of the evaporation of antimony, as the volatile element, supported by microstructure observations and by diffusion profiles are summarized and discussed in view of a full understanding of the degradation processes and knowledge of the long term operation stability of the bulk and nano-structured thermoelectrics studied. It was found out that the antimony evaporation is a complex diffusion kinetic process resulting in a stable Sb level dependent on the preparation route. The studied p-type skutterudites, DD0.7Fe3CoSb12, have proven their long term stability in thermoelectric devices at a maximum operation temperature of 600 °C. Complementary data on the structural, physical and mechanical properties of the materials are presented as well.

8.
Dalton Trans ; 47(37): 12933-12943, 2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30132767

RESUMO

Investigation of the system Th-Ni-B prompted a novel ternary compound ThNi12B6. X-ray structure analysis of single crystals obtained by the mechanical fragmentation of an as-cast sample revealed a fully ordered CeNi12B6-type structure (space group Cmc21, no. 36; a = 0.95638(1) nm, b = 0.73852(1) nm, c = 1.10195(1) nm; RF2 = 0.0305). Density functional theory (DFT) calculations have been performed comprising heat of formation, electronic band structure and density of states, Fermi surface via Wannier functions, phonon band structure and density of states, phonon and electronic contributions to specific heat and elastic constants Cij. Comparing the parameters evaluated from DFT with the experimental data, an overall satisfactory agreement has been achieved. Measurements of electrical resistivity, magnetic susceptibility and specific heat manifest a Pauli paramagnetic, metallic behaviour for ThNi12B6 without any anomalies, in close match with the isotypic homologue LaNi12B6. Static and dynamic hardness data show rather high values; Young's modulus is in the range of 240 GPa. The Debye temperature, θD = 490 K, gained via elastic constants, is slightly higher than the values extracted from specific heat or electrical resistivity data. A rather low coefficient of thermal expansion, α = 5.5 × 10-6 K-1, was derived from the temperature dependent length change.

9.
J Phys Condens Matter ; 30(9): 095701, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29432210

RESUMO

The figure of merit (zT) of a thermoelectric material can be enhanced by incorporation of nanoinclusions into bulk material. The presence of bismuth telluride (Bi2Te3) nanoinclusions in Co4Sb12 leads to lower phonon thermal conductivity by introducing interfaces and defects; it enhances the average zT between 300-700 K. In the current study, Bi2Te3 nanoparticles were dispersed into bulk Co4Sb12 by ball-milling. The bulk was fabricated by spark plasma sintering. The presence of Bi2Te3 dispersion in Co4Sb12 was confirmed by x-ray diffraction, scanning electron microscopy, transmission electron microscopy and electron back scattered diffraction technique. Energy dispersive spectroscopy showed antimony (Sb) as an impurity phase for higher contents of Bi2Te3 in the sample. The Seebeck coefficient (S) and electrical conductivity (σ) were measured in the temperature range of 350-673 K. The negative value of S indicates that most of the charge carriers were electrons. A decrease in S and increase in σ with Bi2Te3 content are due to the increased carrier concentration, as confirmed by Hall measurement. The thermal conductivity, measured between 423-673 K, decreased due to the increased phonon scattering at interfaces. A maximum zT of 0.17 was achieved at 523 K and it did not vary much throughout the temperature range. The experimental results of composites were compared by using effective medium theories.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA