Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(22): 13063-13082, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36464162

RESUMO

The glucocorticoid receptor (GR) is a ubiquitously expressed transcription factor that controls metabolic and homeostatic processes essential for life. Although numerous crystal structures of the GR ligand-binding domain (GR-LBD) have been reported, the functional oligomeric state of the full-length receptor, which is essential for its transcriptional activity, remains disputed. Here we present five new crystal structures of agonist-bound GR-LBD, along with a thorough analysis of previous structural work. We identify four distinct homodimerization interfaces on the GR-LBD surface, which can associate into 20 topologically different homodimers. Biologically relevant homodimers were identified by studying a battery of GR point mutants including crosslinking assays in solution, quantitative fluorescence microscopy in living cells, and transcriptomic analyses. Our results highlight the relevance of non-canonical dimerization modes for GR, especially of contacts made by loop L1-3 residues such as Tyr545. Our work illustrates the unique flexibility of GR's LBD and suggests different dimeric conformations within cells. In addition, we unveil pathophysiologically relevant quaternary assemblies of the receptor with important implications for glucocorticoid action and drug design.


Assuntos
Glucocorticoides , Receptores de Glucocorticoides , Receptores de Glucocorticoides/metabolismo , Ligantes , Ligação Proteica , Dimerização
2.
J Sci Food Agric ; 103(10): 4867-4875, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36929660

RESUMO

BACKGROUND: Antioxidants are chemicals used to protect foods from deterioration by neutralizing free radicals and inhibiting the oxidative process. One approach to investigate the antioxidant activity is to develop quantitative structure-activity relationships (QSARs). RESULTS: A curated database of 165 structurally heterogeneous phenolic compounds with the Trolox equivalent antioxidant capacity (TEAC) was developed. Molecular geometries were optimized by means of the GFN2-xTB semiempirical method and diverse molecular descriptors were obtained afterwards. For model development, V-WSP unsupervised variable reduction was used before performing the genetic algorithms-variable subset selection (GAs-VSS) to construct the best five-descriptor multiple linear regression model. The coefficient of determination and the root mean square error were used to measure the performance in calibration (R2 = 0.789 and RMSEC = 0.381), and test set prediction (Q2 = 0.748 and RMSEP = 0.416), along several cross-validation criteria. To thoroughly understand the TEAC prediction, a fully explained mechanism of action of the descriptors is provided. In addition, the applicability domain of the model defined a theoretical chemical space for reliable predictions of new phenolic compounds. CONCLUSION: This in silico model conforms to the five principles stated by the Organisation for Economic Co-operation and Development. The model might be useful for virtual screening of the antioxidant chemical space and for identifying the most potent molecules related to an experimental measurement of TEAC activity. In addition, the model could assist chemists working on computer-aided drug design for the synthesis of new targets with improved activity and potential uses in food science. © 2023 Society of Chemical Industry.


Assuntos
Antioxidantes , Quimioinformática , Antioxidantes/química , Relação Quantitativa Estrutura-Atividade , Análise Multivariada , Radicais Livres , Fenóis
3.
Mol Biol Evol ; 37(7): 1925-1941, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32125435

RESUMO

Polycyclic triterpenes are members of the terpene family produced by the cyclization of squalene. The most representative polycyclic triterpenes are hopanoids and sterols, the former are mostly found in bacteria, whereas the latter are largely limited to eukaryotes, albeit with a growing number of bacterial exceptions. Given their important role and omnipresence in most eukaryotes, contrasting with their scant representation in bacteria, sterol biosynthesis was long thought to be a eukaryotic innovation. Thus, their presence in some bacteria was deemed to be the result of lateral gene transfer from eukaryotes. Elucidating the origin and evolution of the polycyclic triterpene synthetic pathways is important to understand the role of these compounds in eukaryogenesis and their geobiological value as biomarkers in fossil records. Here, we have revisited the phylogenies of the main enzymes involved in triterpene synthesis, performing gene neighborhood analysis and phylogenetic profiling. Squalene can be biosynthesized by two different pathways containing the HpnCDE or Sqs proteins. Our results suggest that the HpnCDE enzymes are derived from carotenoid biosynthesis ones and that they assembled in an ancestral squalene pathway in bacteria, while remaining metabolically versatile. Conversely, the Sqs enzyme is prone to be involved in lateral gene transfer, and its emergence is possibly related to the specialization of squalene biosynthesis. The biosynthesis of hopanoids seems to be ancestral in the Bacteria domain. Moreover, no triterpene cyclases are found in Archaea, invoking a potential scenario in which eukaryotic genes for sterol biosynthesis assembled from ancestral bacterial contributions in early eukaryotic lineages.


Assuntos
Carotenoides/metabolismo , Evolução Molecular , Farnesil-Difosfato Farnesiltransferase/genética , Filogenia , Esqualeno/metabolismo , Eucariotos/metabolismo , Farnesil-Difosfato Farnesiltransferase/metabolismo , Genes Bacterianos , Esteróis/biossíntese
4.
EMBO J ; 35(9): 942-60, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-26933123

RESUMO

The generation of multiciliated cells (MCCs) is required for the proper function of many tissues, including the respiratory tract, brain, and germline. Defects in MCC development have been demonstrated to cause a subclass of mucociliary clearance disorders termed reduced generation of multiple motile cilia (RGMC). To date, only two genes, Multicilin (MCIDAS) and cyclin O (CCNO) have been identified in this disorder in humans. Here, we describe mice lacking GEMC1 (GMNC), a protein with a similar domain organization as Multicilin that has been implicated in DNA replication control. We have found that GEMC1-deficient mice are growth impaired, develop hydrocephaly with a high penetrance, and are infertile, due to defects in the formation of MCCs in the brain, respiratory tract, and germline. Our data demonstrate that GEMC1 is a critical regulator of MCC differentiation and a candidate gene for human RGMC or related disorders.


Assuntos
Proteínas de Transporte/metabolismo , Diferenciação Celular , Cílios/genética , Cílios/fisiologia , Transtornos do Crescimento/genética , Transtornos do Crescimento/patologia , Animais , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , Camundongos , Camundongos Knockout
5.
Methods ; 152: 31-40, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30253202

RESUMO

Messenger RNAs (mRNAs) fulfil specific biological roles in cells and, thus, their expression may be adapted to suit specific circumstances. This is in part achieved through selective gene transcription and post-transcriptional events, the regulation of which must be tightly integrated and controlled. To comprehensively study the coordinated effects of transcriptional and post-transcriptional regulatory elements, and to obtain coherent results, it is advisable to use different methodologies. Adequately integrating the data derived from these distinct methodologies then becomes critical to elucidating the relationships between the coordinated cellular effects assayed, particularly when applied to normal and disease states. Such integrated studies are likely to be particularly useful to identify markers suitable for early detection of diseases and to devise strategies for therapeutic interventions. Throughout this chapter, we will focus on the methods currently available to analyse mRNA and microRNA (miRNA) expression, paying special attention to the influence of miRNAs on mRNA metabolism. We will introduce miARma-Seq, a comprehensive pipeline that facilitates the simultaneous integration of mRNA and miRNA expression data. For illustrative purposes, we include a case study that incorporates data from RNASeq and small-RNASeq, detailing all the steps necessary to define the differential expression of both mRNA- and miRNA-encoding genes. Finally, we explore the possible regulatory relationships that drive significant and potentially relevant changes in mRNA and miRNA gene expression.


Assuntos
Perfilação da Expressão Gênica/métodos , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Regulação da Expressão Gênica , Humanos , Análise de Sequência de RNA/métodos
6.
Adv Exp Med Biol ; 1087: 17-33, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30259354

RESUMO

Circular RNAs (circRNAs) are noncoding and single-stranded RNA transcripts able to form covalently circular-closed structures. They are generated through alternative splicing events and widely expressed from human to viruses. CircRNAs have been appointed as potential regulators of microRNAs (miRNAs), RNA-binding proteins (RPBs), and lineal protein-coding transcripts. Although their mechanism of action remains unclear, the deregulation of circular RNAs has been confirmed in different diseases such as Alzheimer or cancer.The introduction of high-throughput next-generation sequencing (NGS) technology provides millions of short RNA sequences at single-nucleotide level, allowing an accurate and proficient method to measure circular RNAs. Novel protocols based on non-polyadenylated RNAs, rRNA-depleted, and RNA exonuclease-based enrichment approaches (RNase R) have taken even further the possibility of detecting circRNAs.Besides, the identification of circRNAs presence requires the development of specific bioinformatics tools to detect junction-spanning sequences from transcriptome deep-sequencing samples. Thus, recently established bioinformatics' approaches have permitted the discovery of an elevated number of different circRNAs in diverse organisms. In that sense, recent studies have compared different methods and advocate the simultaneous use of more than one prediction tool. For that reason, we want to highlight pipelines such as miARma-Seq that is able to execute various circular RNA identification algorithms in an easy way, without the tedious installation of third-party prerequisites.


Assuntos
RNA/análise , Análise de Sequência de RNA/métodos , Bases de Dados Genéticas , Previsões , Regulação da Expressão Gênica , Humanos , MicroRNAs/genética , RNA/genética , RNA/metabolismo , Splicing de RNA , RNA Circular , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/metabolismo , Software , Análise Serial de Tecidos
7.
Rev Argent Microbiol ; 50(1): 90-96, 2018.
Artigo em Espanhol | MEDLINE | ID: mdl-28988902

RESUMO

The genus Fusarium is widely recognized for its phytopathogenic capacity. However, it has been reported as an opportunistic pathogen in immunocompetent and immunocompromised patients. Thus, it can be considered a microorganism of interest in pathogenicity studies on different hosts. Therefore, this work evaluated the pathogenicity of Fusarium spp. isolates from different origins in plants and animals (murine hosts). Twelve isolates of Fusarium spp. from plants, animal superficial mycoses, and human superficial and systemic mycoses were inoculated in tomato, passion fruit and carnation plants, and in immunocompetent and immunosuppressed BALB/c mice. Pathogenicity tests in plants did not show all the symptoms associated with vascular wilt in the three plant models; however, colonization and necrosis of the vascular bundles, regardless of the species and origin of the isolates, showed the infective potential of Fusarium spp. in different plant species. Moreover, the pathogenicity tests in the murine model revealed behavioral changes. It was noteworthy that only five isolates (different origin and species) caused mortality. Additionally, it was observed that all isolates infected and colonized different organs, regardless of the species and origin of the isolates or host immune status. In contrast, the superficial inoculation test showed no evidence of epidermal injury or colonization. The observed results in plant and murine models suggest the pathogenic potential of Fusarium spp. isolates in different types of hosts. However, further studies on pathogenicity are needed to confirm the multihost capacity of this genus.


Assuntos
Fusariose , Fusarium , Animais , Modelos Animais de Doenças , Fusarium/patogenicidade , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Doenças das Plantas/microbiologia , Virulência
8.
Mov Disord ; 31(11): 1743-1748, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27477325

RESUMO

BACKGROUND: Episodic ataxia type 1 is a rare autosomal dominant neurological disorder caused by mutations in the KCNA1 gene that encodes the α subunit of voltage-gated potassium channel Kv1.1. The functional consequences of identified mutations on channel function do not fully correlate with the clinical phenotype of patients. METHODS: A clinical and genetic study was performed in a family with 5 patients with episodic ataxia type 1, with concurrent epilepsy in 1 of them. Protein expression, modeling, and electrophysiological analyses were performed to study Kv1.1 function. RESULTS: Whole-genome linkage and candidate gene analyses revealed the novel heterozygous mutation p.Arg324Thr in the KCNA1 gene. The encoded mutant Kv1.1 channel displays reduced currents and altered activation and inactivation. CONCLUSIONS: Taken together, we provide genetic and functional evidence that mutation p.Arg324Thr in the KCNA1 gene is pathogenic and results in episodic ataxia type 1 through a dominant-negative effect. © 2016 International Parkinson and Movement Disorder Society.


Assuntos
Ataxia/genética , Ataxia/fisiopatologia , Canal de Potássio Kv1.1/genética , Mioquimia/genética , Mioquimia/fisiopatologia , Epilepsia/genética , Epilepsia/fisiopatologia , Feminino , Humanos , Masculino , Linhagem
9.
FASEB J ; 29(6): 2371-85, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25713054

RESUMO

Type I phosphatidylinositol 4-phosphate 5-kinases (PIP5KIs; α, ß, and γ) are a family of isoenzymes that produce phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] using phosphatidylinositol 4-phosphate as substrate. Their structural homology with the class II lipid kinases [type II phosphatidylinositol 5-phosphate 4-kinase (PIP4KII)] suggests that PIP5KI dimerizes, although this has not been formally demonstrated. Neither the hypothetical structural dimerization determinants nor the functional consequences of dimerization have been studied. Here, we used Förster resonance energy transfer, coprecipitation, and ELISA to show that PIP5KIß forms homo- and heterodimers with PIP5KIγ_i2 in vitro and in live human cells. Dimerization appears to be a general phenomenon for PIP5KI isoenzymes because PIP5KIß/PIP5KIα heterodimers were also detected by mass spectrometry. Dimerization was independent of actin cytoskeleton remodeling and was also observed using purified proteins. Mutagenesis studies of PIP5KIß located the dimerization motif at the N terminus, in a region homologous to that implicated in PIP4KII dimerization. PIP5KIß mutants whose dimerization was impaired showed a severe decrease in PI(4,5)P2 production and plasma membrane delocalization, although their association to lipid monolayers was unaltered. Our results identify dimerization as an integral feature of PIP5K proteins and a central determinant of their enzyme activity.


Assuntos
Membrana Celular/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Multimerização Proteica , Ensaio de Imunoadsorção Enzimática , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Células HL-60 , Humanos , Immunoblotting , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Microscopia Confocal , Mutação , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Especificidade por Substrato
10.
Mol Biol Evol ; 31(4): 940-61, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24441036

RESUMO

The DNA damage response (DDR) is a crucial signaling network that preserves the integrity of the genome. This network is an ensemble of distinct but often overlapping subnetworks, where different components fulfill distinct functions in precise spatial and temporal scenarios. To understand how these elements have been assembled together in humans, we performed comparative genomic analyses in 47 selected species to trace back their emergence using systematic phylogenetic analyses and estimated gene ages. The emergence of the contribution of posttranslational modifications to the complex regulation of DDR was also investigated. This is the first time a systematic analysis has focused on the evolution of DDR subnetworks as a whole. Our results indicate that a DDR core, mostly constructed around metabolic activities, appeared soon after the emergence of eukaryotes, and that additional regulatory capacities appeared later through complex evolutionary process. Potential key posttranslational modifications were also in place then, with interacting pairs preferentially appearing at the same evolutionary time, although modifications often led to the subsequent acquisition of new targets afterwards. We also found extensive gene loss in essential modules of the regulatory network in fungi, plants, and arthropods, important for their validation as model organisms for DDR studies.


Assuntos
Dano ao DNA , Reparo do DNA , Animais , Artrópodes/genética , Pontos de Checagem do Ciclo Celular , Evolução Molecular , Fungos/genética , Redes Reguladoras de Genes , Genoma Humano , Humanos , Filogenia , Plantas/genética , Mapas de Interação de Proteínas/genética , Processamento de Proteína Pós-Traducional/genética
11.
Int J Mol Sci ; 16(3): 6057-75, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25809605

RESUMO

The action of protease and hemicellulase for the extraction of fractions enriched in soluble fiber from bracts and stems of Cynara cardunculus was evaluated. Using a two-factor simplex design comprising protease amounts of 0-200 µL and hemicellulase amounts of 0-200 mg for 5 g of material, we explored the effect of a 5 h enzymatic treatment at 40 °C on the chemical composition and yield of the fractions isolated. The fractions contained inulin and pectin. In general, the protein, inulin, and polyphenol contents and also the yields were higher for fractions obtained from stems. The most marked effects were observed when enzymes were used at higher concentrations, especially for hemicellulase. The inclusion of a pre-heating step increased the yield and the inulin content for fractions isolated from bracts and stems and decreased the protein and polyphenol contents, and the galacturonic acid for bracts. These fractions, in general, contained the polyphenolic compounds monocaffeoylquinic acid, apigenin, and pinoresinol.


Assuntos
Cynara/química , Fibras na Dieta/metabolismo , Glicosídeo Hidrolases/metabolismo , Peptídeo Hidrolases/metabolismo , Extratos Vegetais/química
12.
Proteins ; 82(1): 103-18, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23900790

RESUMO

The phosphorylation and dephosphorylation of the carboxyl-terminal domain (CTD) of the largest RNA polymerase II (RNAPII) subunit is a critical regulatory checkpoint for transcription and mRNA processing. This CTD is unique to eukaryotic organisms and it contains multiple tandem-repeats with the consensus sequence Tyr(1) -Ser(2) -Pro(3) -Thr(4) -Ser(5) -Pro(6) -Ser(7) . Traditionally, CTD phosphatases that use metal-ion-independent (cysteine-based) and metal-ion-assisted (aspartate-based) catalytic mechanisms have been considered to belong to two independent groups. However, using structural comparisons we have identified a common structural scaffold in these two groups of CTD phosphatases. This common scaffold accommodates different catalytic processes with the same substrate specificity, in this case phospho-serine/threonine residues flanked by prolines. Furthermore, this scaffold provides a structural connection between two groups of protein tyrosine phosphatases (PTPs): Cys-based (classes I, II, and III) and Asp-based (class IV) PTPs. Redundancy in catalytic mechanisms is not infrequent and may arise in specific biological settings. To better understand the activity of the CTD phosphatases, we combined our structural analyses with data on CTD phosphatase expression in different human and mouse tissues. The results suggest that aspartate- and cysteine-based CTD-dephosphorylation acts in concert during cellular stress, when high levels of reactive oxygen species can inhibit the nucleophilic function of the catalytic cysteine, as occurs in mental and neurodegenerative disorders like schizophrenia, Alzheimer's and Parkinson's diseases. Moreover, these findings have significant implications for the study of the RNAPII-CTD dephosphorylation in eukaryotes.


Assuntos
Evolução Molecular , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/metabolismo , RNA Polimerase II/metabolismo , Sequência de Aminoácidos , Animais , Catálise , Biologia Computacional , Bases de Dados de Proteínas , Humanos , Camundongos , Dados de Sequência Molecular , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/química , Peptidilprolil Isomerase/metabolismo , Fosfoproteínas Fosfatases/classificação , Fosfoproteínas Fosfatases/genética , Fosforilação , Schizosaccharomyces/enzimologia , Especificidade da Espécie
13.
Carbohydr Polym ; 336: 122123, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670754

RESUMO

Arabinoglucuronoxylans obtained from the exudate of Cercidium praecox (Brea gum) were subjected to an amidation reaction to modulate their flow behavior to obtain a product with similar behavior to gum Arabic. The amidation reaction of the uronic acids present in this exudate was studied using the 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS) system with the aim of maximizing product yield and minimizing by-product. An analysis of the significant factors involved in the reaction was carried out and a response surface methodology was conducted to optimize the stoichiometry of the reagents used. It was possible to obtain models for predicting the degree of amidation (DA) of arabinoglucuronoxylans and the formation of by-products. The formation of a secondary product derived from the amino acid ß-alanine which has not been reported previously in the reaction with polysaccharides, was described. The flow behavior of an amidated product (DA = 52 %) was determined, showing a pseudoplastic behavior and a decreased Newtonian viscosity (η0 = 36.2 Pa s) at the lowest shear rate range with respect to native product solution (η0 = 115 Pa s). Amidated arabinoglucuronoxylans had a flow behavior more similar to that of gum Arabic.


Assuntos
Xilanos , Viscosidade , Xilanos/química , Reologia , Ácidos Urônicos/química
14.
NAR Genom Bioinform ; 6(3): lqae078, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38962255

RESUMO

Protein language models have been tested and proved to be reliable when used on curated datasets but have not yet been applied to full proteomes. Accordingly, we tested how two different machine learning-based methods performed when decoding functional information from the proteomes of selected model organisms. We found that protein language models are more precise and informative than deep learning methods for all the species tested and across the three gene ontologies studied, and that they better recover functional information from transcriptomic experiments. The results obtained indicate that these language models are likely to be suitable for large-scale annotation and downstream analyses, and we recommend a guide for their use.

15.
Carbohydr Polym ; 342: 122324, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39048213

RESUMO

The system of polysaccharides from Schizymenia dubyi (Nemastomatales) was investigated. It contains a mixture of hybrid dl galactans (SH-S) and carrageenan-like polysaccharides, which were separated by means of precipitation with KCl at high concentrations. The structural features of the carrageenan-like fraction (SH-I) were investigated by methylation analysis, desulfation, uronic acid reduction, and NMR spectroscopy. It was concluded that the structure has the typical alternance α-(1 â†’ 3), ß-(1 â†’ 4) of d-galactose units, with most of the 3-linked units sulfated in O-2 (and some in O-4), and most of the 4-linked units sulfated in O-3, and substituted in O-2 by single stubs of ß-d-glucuronic acid (partly sulfated in each of the three available positions). This substituent has been only seldom found in red seaweed galactans. Rheological studies of 5 % and 10 % w/v SH, SH-S and SH-I aqueous systems, either without ions, or in KCl or CaCl2 solution gave thickening behaviors. Their random coil conformations justify the pseudoplastic behavior observed in the viscosity versus shear rate curves. As SH-S and SH-I are both contained in SH, an interpenetrating network could form in SH between the glucurono-carrageenan and the agaran, as inferred from the mechanical spectra recorded in water, especially with potassium ion.


Assuntos
Carragenina , Reologia , Carragenina/química , Viscosidade , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Galactanos/química , Rodófitas/química , Espectroscopia de Ressonância Magnética
16.
Antonie Van Leeuwenhoek ; 104(4): 509-20, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23918348

RESUMO

The regulation of signal transduction by phosphorylation and ubiquitination is essential to ensure the correct behavior of eukaryotic cells. We searched for protein families involved in such signaling in several eukaryotic species and in a limited set of prokaryotes, where two members of the Planctomycetes phylum were included as they exhibit eukaryote-like features (Gemmata obscuriglobus and Pirellula staleyi). We identified sequences homologous to eukaryotic serine/threonine kinases (STKs) and E2-ubiquitin conjugating enzymes in the two Planctomycetes species. To extend these analyses to the Planctomycetes/Verrucomicrobia/Chlamydia super-phylum, we performed comparative analyses using domains from kinases, phosphatases and GTPases that serve as signaling signatures, and we analyzed their distributions. We found substantial differences in kinome densities with regards to other prokaryote clades and among the groups in the Planctomycetes/Verrucomicrobia/Chlamydia super-phylum. In addition, we identified the presence of classic eukaryotic E2-conjugating ubiquitin proteins in prokaryotes, these having previously believed to exist only in eukaryotes. Our phylogenetic analyses of the STKs signature domains and E2-enzymes suggest the existence of horizontal gene transfer.


Assuntos
Bactérias/classificação , Bactérias/genética , Proteínas Serina-Treonina Quinases/genética , Enzimas de Conjugação de Ubiquitina/genética , Eucariotos/genética , Genoma Bacteriano , Filogenia , RNA Ribossômico 16S/genética
17.
Food Chem ; 412: 135547, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36716626

RESUMO

Dried and milled eggplant fruit peel and calyces (PC) and mesocarp, placenta and core (Mes) were utilized as natural sources of valuable chemicals. Pectins were extracted with 0.1 M Na2CO3 (1 h; 23 °C). A high-power ultrasound (US) pretreatment (10 min net time; 12.76 W/cm2 power intensity) in 10:200 (g/mL) powder:water ratio led to the lowest solvent and energy consumptions after the subsequent 0.1 M Na2CO3 stirring, permitting the highest recoveries of uronic acid (UA) from PC and Mes (80.25 and 93.8 %, respectively). Homogalacturonans (>65 % w/w UA) of low degree of methylesterification, of acetylation, and 90,214-138,184 Da molecular weights with low polydispersity (≈1.32-1.40) were obtained. They included released ferulate (≈3.5 mg/100 g) esterified pectins. Antioxidants (caffeoylquinic acid, putrescine and spermidine derivatives, ß-carotene, lutein) gave additional technological value to their thickening effect as pectins protected tryptophan, tyrosine, alkyl side chains and sulfhydryl of skim milk proteins from UV-C photo-oxidation.


Assuntos
Antioxidantes , Solanum melongena , Antioxidantes/análise , Solanum melongena/química , Frutas/química , Pectinas/metabolismo
18.
Sci Adv ; 9(11): eade2175, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36921044

RESUMO

Mutations of the androgen receptor (AR) associated with prostate cancer and androgen insensitivity syndrome may profoundly influence its structure, protein interaction network, and binding to chromatin, resulting in altered transcription signatures and drug responses. Current structural information fails to explain the effect of pathological mutations on AR structure-function relationship. Here, we have thoroughly studied the effects of selected mutations that span the complete dimer interface of AR ligand-binding domain (AR-LBD) using x-ray crystallography in combination with in vitro, in silico, and cell-based assays. We show that these variants alter AR-dependent transcription and responses to anti-androgens by inducing a previously undescribed allosteric switch in the AR-LBD that increases exposure of a major methylation target, Arg761. We also corroborate the relevance of residues Arg761 and Tyr764 for AR dimerization and function. Together, our results reveal allosteric coupling of AR dimerization and posttranslational modifications as a disease mechanism with implications for precision medicine.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Masculino , Humanos , Receptores Androgênicos/química , Ligação Proteica , Mutação , Neoplasias da Próstata/genética , Processamento de Proteína Pós-Traducional
19.
Biochim Biophys Acta ; 1813(5): 1050-8, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21070824

RESUMO

DREAM is a Ca(2+)-binding protein with specific functions in different cell compartments. In the nucleus, DREAM acts as a transcriptional repressor, although the mechanism that controls its nuclear localization is unknown. Yeast two-hybrid assay revealed the interaction between DREAM and the SUMO-conjugating enzyme Ubc9 and bioinformatic analysis identified four sumoylation-susceptible sites in the DREAM sequence. Single K-to-R mutations at positions K26 and K90 prevented in vitro sumoylation of recombinant DREAM. DREAM sumoylation mutants retained the ability to bind to the DRE sequence but showed reduced nuclear localization and failed to regulate DRE-dependent transcription. In PC12 cells, sumoylated DREAM is present exclusively in the nucleus and neuronal differentiation induced nuclear accumulation of sumoylated DREAM. In fully differentiated trigeminal neurons, DREAM and SUMO-1 colocalized in nuclear domains associated with transcription. Our results show that sumoylation regulates the nuclear localization of DREAM in differentiated neurons. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.


Assuntos
Núcleo Celular/metabolismo , Proteínas Interatuantes com Canais de Kv/metabolismo , Proteínas Repressoras/metabolismo , Sumoilação , Sequência de Aminoácidos , Animais , Diferenciação Celular , Análise Mutacional de DNA , Células HEK293 , Células HeLa , Humanos , Proteínas Interatuantes com Canais de Kv/química , Camundongos , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Células PC12 , Ligação Proteica , Transporte Proteico , Ratos , Proteínas Repressoras/química , Proteína SUMO-1/metabolismo , Alinhamento de Sequência , Nervo Trigêmeo/metabolismo , Nervo Trigêmeo/ultraestrutura , Enzimas de Conjugação de Ubiquitina/metabolismo
20.
Trends Biochem Sci ; 32(9): 400-6, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17693089

RESUMO

Promyelocytic leukaemia protein nuclear bodies (PML-NBs) are nuclear structures whose function is still poorly understood. They are implicated in various biological functions, such as viral infection, cellular transformation, innate immunity and growth control, and they might be dynamic hubs sensing stress and DNA damage. Data from PML(-/-) mice suggest that PML-NBs are involved in apoptosis via caspase-independent mechanisms, probably involving p53-dependent and independent pathways. However, the recently demonstrated co-localization of caspase-2 within the PML-NB nuclear structures presents a new paradigm for nuclear cell death. Here, we show that these nuclear structures have a protein known as SP100 that could contain a caspase recruitment domain (CARD). If verified experimentally, this discovery will suggest a mechanism by which caspase-2 could be recruited into the complex and ultimately lead to apoptosis.


Assuntos
Apoptose , Caspase 2/metabolismo , Cisteína Endopeptidases/metabolismo , Corpos de Inclusão Intranuclear/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Sequência de Aminoácidos , Animais , Antígenos Nucleares/metabolismo , Autoantígenos/metabolismo , Proteína Adaptadora de Sinalização CRADD , Estruturas do Núcleo Celular , Humanos , Dados de Sequência Molecular , Proteína da Leucemia Promielocítica , Homologia de Sequência de Aminoácidos , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA