RESUMO
The twin-arginine protein translocation (Tat) system mediates transport of folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of chloroplasts. The Tat system of Escherichia coli is made up of TatA, TatB, and TatC components. TatBC comprise the substrate receptor complex, and active Tat translocases are formed by the substrate-induced association of TatA oligomers with this receptor. Proteins are targeted to TatBC by signal peptides containing an essential pair of arginine residues. We isolated substitutions, locating to the transmembrane helix of TatB that restored transport activity to Tat signal peptides with inactivating twin arginine substitutions. A subset of these variants also suppressed inactivating substitutions in the signal peptide binding site on TatC. The suppressors did not function by restoring detectable signal peptide binding to the TatBC complex. Instead, site-specific cross-linking experiments indicate that the suppressor substitutions induce conformational change in the complex and movement of the TatB subunit. The TatB F13Y substitution was associated with the strongest suppressing activity, even allowing transport of a Tat substrate lacking a signal peptide. In vivo analysis using a TatA-YFP fusion showed that the TatB F13Y substitution resulted in signal peptide-independent assembly of the Tat translocase. We conclude that Tat signal peptides play roles in substrate targeting and in triggering assembly of the active translocase.
Assuntos
Arginina/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/química , Sinais Direcionadores de Proteínas , Sequência de Aminoácidos , Substituição de Aminoácidos , Arginina/metabolismo , Sítios de Ligação , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Especificidade por SubstratoRESUMO
The twin-arginine translocation (Tat) pathway is one of two general protein transport systems found in the prokaryotic cytoplasmic membrane and is conserved in the thylakoid membrane of plant chloroplasts. The defining, and highly unusual, property of the Tat pathway is that it transports folded proteins, a task that must be achieved without allowing appreciable ion leakage across the membrane. The integral membrane TatC protein is the central component of the Tat pathway. TatC captures substrate proteins by binding their signal peptides. TatC then recruits TatA family proteins to form the active translocation complex. Here we report the crystal structure of TatC from the hyperthermophilic bacterium Aquifex aeolicus. This structure provides a molecular description of the core of the Tat translocation system and a framework for understanding the unique Tat transport mechanism.
Assuntos
Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/metabolismo , Proteínas de Membrana Transportadoras/química , Modelos Moleculares , Sítios de Ligação , Escherichia coli/genética , Bactérias Gram-Negativas/genética , Proteínas de Membrana Transportadoras/metabolismo , Ligação Proteica , Sinais Direcionadores de Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genéticaRESUMO
ß-Barrel membrane proteins are found in the outer membranes of mitochondria, chloroplasts, and Gram-negative bacteria; however, exactly how they are folded and inserted remains unknown. Over the past decade, both functional and structural studies have greatly contributed to addressing this elusive mechanism. It is known that a conserved core machinery is required for each organelle, though the overall composition varies significantly. The vast majority of studies that aimed to understand the biogenesis of ß-barrel membrane proteins has been conducted in Gram-negative bacteria. Here, it is the task of a multicomponent complex known as the ß-barrel assembly machinery (BAM) complex to fold and insert new ß-barrel membrane proteins into the outer membrane. In this review, we will discuss recent discoveries with the goal of utilizing all reported structural and functional studies to piece together a current structural model for the fully assembled BAM complex.
Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Bactérias Gram-Negativas/metabolismo , Proteínas da Membrana Bacteriana Externa/análise , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/citologia , Modelos Moleculares , Mapas de Interação de Proteínas , Estrutura Secundária de ProteínaRESUMO
Saccharomyces cerevisiae is a useful eukaryotic expression system for mitochondrial membrane proteins due to its ease of growth and ability to provide a native membrane environment. The development of the pBEVY vector system has further increased the potential of S. cerevisiae as an expression system by creating a method for expressing multiple proteins simultaneously. This vector system is amenable to the expression and purification of multi-subunit protein complexes. Here we describe the cloning, yeast transformation, and co-expression of multi-subunit outer mitochondrial membrane complexes using the pBEVY vector system.
Assuntos
Clonagem Molecular/métodos , Proteínas de Membrana , Membranas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fracionamento Celular/métodos , Regulação Fúngica da Expressão Gênica , Vetores Genéticos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Membranas Mitocondriais/química , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/isolamento & purificação , Proteínas Mitocondriais/metabolismo , Organismos Geneticamente Modificados , Multimerização Proteica/genética , Processamento de Proteína Pós-Traducional , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transformação GenéticaRESUMO
In mitochondria, ß-barrel outer membrane proteins mediate protein import, metabolite transport, lipid transport, and biogenesis. The Sorting and Assembly Machinery (SAM) complex consists of three proteins that assemble as a 1:1:1 complex to fold ß-barrel proteins and insert them into the mitochondrial outer membrane. We report cryoEM structures of the SAM complex from Myceliophthora thermophila, which show that Sam50 forms a 16-stranded transmembrane ß-barrel with a single polypeptide-transport-associated (POTRA) domain extending into the intermembrane space. Sam35 and Sam37 are located on the cytosolic side of the outer membrane, with Sam35 capping Sam50, and Sam37 interacting extensively with Sam35. Sam35 and Sam37 each adopt a GST-like fold, with no functional, structural, or sequence similarity to their bacterial counterparts. Structural analysis shows how the Sam50 ß-barrel opens a lateral gate to accommodate its substrates.
Assuntos
Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Biossíntese de Proteínas , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Microscopia Crioeletrônica , Detergentes/química , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Conformação Proteica , Dobramento de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Sordariales/genética , Sordariales/metabolismoRESUMO
The outer membranes (OM) of Gram-negative bacteria contain a host of ß-barrel outer membrane proteins (OMPs) which serve many functions for cell survival and virulence. The biogenesis of these OMPs is mediated by the ß-barrel assembly machinery (BAM) complex which is composed of five components including the essential core component called BamA that mediates the insertase function within the OM. The crystal structure of BamA has recently been reported from three different species, including a full-length structure from Neisseria gonorrhoeae. Mutagenesis and functional studies identified several conformational changes within BamA that are required for function, providing a significant advancement towards unraveling exactly how BamA and the BAM complex are able to fold and insert new OMPs in the OM.
Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Bactérias Gram-Negativas , Estrutura Secundária de ProteínaRESUMO
Gram-negative bacteria contain a double membrane which serves for both protection and for providing nutrients for viability. The outermost of these membranes is called the outer membrane (OM), and it contains a host of fully integrated membrane proteins which serve essential functions for the cell, including nutrient uptake, cell adhesion, cell signalling and waste export. For pathogenic strains, many of these outer membrane proteins (OMPs) also serve as virulence factors for nutrient scavenging and evasion of host defence mechanisms. OMPs are unique membrane proteins in that they have a ß-barrel fold and can range in size from 8 to 26 strands, yet can still serve many different functions for the cell. Despite their essential roles in cell survival and virulence, the exact mechanism for the biogenesis of these OMPs into the OM has remained largely unknown. However, the past decade has witnessed significant progress towards unravelling the pathways and mechanisms necessary for moulding a nascent polypeptide into a functional OMP within the OM. Here, we will review some of these recent discoveries that have advanced our understanding of the biogenesis of OMPs in Gram-negative bacteria, starting with synthesis in the cytoplasm to folding and insertion into the OM.