Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biol Methods Protoc ; 9(1): bpae026, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737789

RESUMO

Rapid and reliable circulating tumor cell (CTC) and disseminated tumor cell (DTC) detection are critical for rigorous evaluation of in vivo metastasis models. Clinical data show that each step of the metastatic cascade presents increasing barriers to success, limiting the number of successful metastatic cells to fewer than 1 in 1,500,000,000. As such, it is critical for scientists to employ approaches that allow for the evaluation of metastatic competency at each step of the cascade. Here, we present a flow cytometry-based method that enables swift and simultaneous comparison of both CTCs and DTCs from single animals, enabling evaluation of multiple metastatic steps within a single model system. We present the necessary gating strategy and optimized sample preparation conditions necessary to capture CTCs and DTCs using this approach. We also provide proof-of-concept experiments emphasizing the appropriate limits of detection of these conditions. Most importantly, we successfully recover CTCs and DTCs from murine blood and bone marrow. In Supplemental materials, we expand the applicability of our method to lung tissue and exemplify a potential multi-plexing strategy to further characterize recovered CTCs and DTCs. This approach to multiparameter flow cytometric detection and analysis of rare cells in in vivo models of metastasis is reproducible, high throughput, broadly applicable, and highly adaptable to a wide range of scientific inquiries. Most notably, it simplifies the recovery and analysis of CTCs and DTCs from the same animal, allowing for a rapid first look at the comparative metastatic competency of various model systems throughout multiple steps of the metastatic cascade.

2.
bioRxiv ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39071340

RESUMO

There remains a large need for a greater understanding of the metastatic process within the prostate cancer field. Our research aims to understand the adaptive - ergo potentially metastatic - responses of cancer to changing microenvironments. Emerging evidence has implicated a role of the Polyaneuploid Cancer Cell (PACC) state in metastasis, positing the PACC state as capable of conferring metastatic competency. Mounting in vitro evidence supports increased metastatic potential of cells in the PACC state. Additionally, our recent retrospective study of prostate cancer patients revealed that PACC presence in the prostate at the time of radical prostatectomy was predictive of future metastatic progression. To test for a causative relationship between PACC state biology and metastasis, we leveraged a novel method designed for flow-cytometric detection of circulating tumor cells (CTCs) and disseminated tumor cells (DTCs) in subcutaneous, caudal artery, and intracardiac mouse models of metastasis. This approach provides both quantitative and qualitative information about the number and PACC-status of recovered CTCs and DTCs. Collating data from all models, we found that 74% of recovered CTCs and DTCs were in the PACC state. In vivo colonization assays proved PACC populations can regain proliferative capacity at metastatic sites following dormancy. Additional direct and indirect mechanistic in vitro analyses revealed a PACC-specific partial Epithelial-to-Mesenchymal-Transition phenotype and a pro-metastatic secretory profile, together providing preliminary evidence that PACCs are mechanistically linked to metastasis.

3.
Immunohorizons ; 8(8): 563-576, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39172026

RESUMO

TLRs initiate innate immune signaling pathways via Toll/IL-1R (TIR) domains on their cytoplasmic tails. Various bacterial species also express TIR domain-containing proteins that contribute to bacterial evasion of the innate immune system. Bacterial TIR domains, along with the mammalian sterile α and TIR motif-containing protein 1 and TIRs from plants, also have been found to exhibit NADase activity. Initial X-ray crystallographic studies of the bacterial TIR from Acinetobacter baumannii provided insight into bacterial TIR structure but were unsuccessful in cocrystallization with the NAD+ ligand, leading to further questions about the TIR NAD binding site. In this study, we designed a Course-Based Undergraduate Research Experience (CURE) involving 16-20 students per year to identify amino acids crucial for NADase activity of A. baumannii TIR domain protein and the TIR from Escherichia coli (TIR domain-containing protein C). Students used structural data to identify amino acids that they hypothesized would play a role in TIR NADase activity, and created plasmids to express mutated TIRs through site-directed mutagenesis. Mutant TIRs were expressed, purified, and tested for NADase activity. The results from these studies provide evidence for a conformational change upon NAD binding, as was predicted by recent cryogenic electron microscopy and hydrogen-deuterium exchange mass spectrometry studies. Along with corroborating recent characterization of TIR NADases that could contribute to drug development for diseases associated with dysregulated TIR activity, this work also highlights the value of CURE-based projects for inclusion of a diverse group of students in authentic research experiences.


Assuntos
Acinetobacter baumannii , NAD+ Nucleosidase , Acinetobacter baumannii/genética , NAD+ Nucleosidase/metabolismo , NAD+ Nucleosidase/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Humanos , NAD/metabolismo , Sítios de Ligação , Domínios Proteicos , Mutagênese Sítio-Dirigida , Cristalografia por Raios X , Imunidade Inata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA