Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell ; 43(2): 217-28, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21777811

RESUMO

The ClpS adaptor delivers N-end rule substrates to ClpAP, an energy-dependent AAA+ protease, for degradation. How ClpS binds specific N-end residues is known in atomic detail and clarified here, but the delivery mechanism is poorly understood. We show that substrate binding is enhanced when ClpS binds hexameric ClpA. Reciprocally, N-end rule substrates increase ClpS affinity for ClpA(6). Enhanced binding requires the N-end residue and a peptide bond of the substrate, as well as multiple aspects of ClpS, including a side chain that contacts the substrate α-amino group and the flexible N-terminal extension (NTE). Finally, enhancement also needs the N domain and AAA+ rings of ClpA, connected by a long linker. The NTE can be engaged by the ClpA translocation pore, but ClpS resists unfolding/degradation. We propose a staged-delivery model that illustrates how intimate contacts between the substrate, adaptor, and protease reprogram specificity and coordinate handoff from the adaptor to the protease.


Assuntos
Proteínas de Transporte/química , Proteínas de Escherichia coli/química , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Endopeptidase Clp/química , Endopeptidase Clp/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Dados de Sequência Molecular , Sensibilidade e Especificidade , Especificidade por Substrato
2.
Proc Natl Acad Sci U S A ; 111(37): E3853-9, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25187555

RESUMO

The ClpS adaptor collaborates with the AAA+ ClpAP protease to recognize and degrade N-degron substrates. ClpS binds the substrate N-degron and assembles into a high-affinity ClpS-substrate-ClpA complex, but how the N-degron is transferred from ClpS to the axial pore of the AAA+ ClpA unfoldase to initiate degradation is not known. Here we demonstrate that the unstructured N-terminal extension (NTE) of ClpS enters the ClpA processing pore in the active ternary complex. We establish that ClpS promotes delivery only in cis, as demonstrated by mixing ClpS variants with distinct substrate specificity and either active or inactive NTE truncations. Importantly, we find that ClpA engagement of the ClpS NTE is crucial for ClpS-mediated substrate delivery by using ClpS variants carrying "blocking" elements that prevent the NTE from entering the pore. These results support models in which enzymatic activity of ClpA actively remodels ClpS to promote substrate transfer, and highlight how ATPase/motor activities of AAA+ proteases can be critical for substrate selection as well as protein degradation.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteólise , Proteínas de Transporte/química , Endopeptidase Clp/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Modelos Moleculares , Proteínas Mutantes/metabolismo , Especificidade por Substrato
3.
Mol Cell ; 32(3): 406-14, 2008 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-18995838

RESUMO

The N-end rule targets specific proteins for destruction in prokaryotes and eukaryotes. Here, we report a crystal structure of a bacterial N-end rule adaptor, ClpS, bound to a peptide mimic of an N-end rule substrate. This structure, which was solved at a resolution of 1.15 A, reveals specific recognition of the peptide alpha-amino group via hydrogen bonding and shows that the peptide's N-terminal tyrosine side chain is buried in a deep hydrophobic cleft that pre-exists on the surface of ClpS. The adaptor side chains that contact the peptide's N-terminal residue are highly conserved in orthologs and in E3 ubiquitin ligases that mediate eukaryotic N-end rule recognition. We show that mutation of critical ClpS contact residues abrogates substrate delivery to and degradation by the AAA+ protease ClpAP, demonstrate that modification of the hydrophobic pocket results in altered N-end rule specificity, and discuss functional implications for the mechanism of substrate delivery.


Assuntos
Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Bactérias/química , Bactérias/metabolismo , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , Células Eucarióticas/química , Células Eucarióticas/fisiologia , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Sensibilidade e Especificidade , Tirosina/química
4.
Proc Natl Acad Sci U S A ; 106(22): 8888-93, 2009 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-19451643

RESUMO

The N-end rule is a conserved degradation pathway that relates the stability of a protein to its N-terminal amino acid. Here, we present crystal structures of ClpS, the bacterial N-end rule adaptor, alone and engaged with peptides containing N-terminal phenylalanine, leucine, and tryptophan. These structures, together with a previous structure of ClpS bound to an N-terminal tyrosine, illustrate the molecular basis of recognition of the complete set of primary N-end rule amino acids. In each case, the alpha-amino group and side chain of the N-terminal residue are the major determinants of recognition. The binding pocket for the N-end residue is preformed in the free adaptor, and only small adjustments are needed to accommodate N-end rule residues having substantially different sizes and shapes. M53A ClpS is known to mediate degradation of an expanded repertoire of substrates, including those with N-terminal valine or isoleucine. A structure of Met53A ClpS engaged with an N-end rule tryptophan reveals an essentially wild-type mechanism of recognition, indicating that the Met(53) side chain directly enforces specificity by clashing with and excluding beta-branched side chains. Finally, experimental and structural data suggest mechanisms that make proteins with N-terminal methionine bind very poorly to ClpS, explaining why these high-abundance proteins are not degraded via the N-end rule pathway in the cell.


Assuntos
Proteínas de Transporte/metabolismo , Caulobacter crescentus/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Cristalografia por Raios X , Endopeptidase Clp/metabolismo , Metionina/genética , Metionina/metabolismo , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Conformação Proteica , Especificidade por Substrato
5.
Methods Mol Biol ; 1329: 203-13, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26427687

RESUMO

To elucidate the mechanism of a biochemical process it is often essential to reconstitute the reaction in vitro using the minimal set of factors required to drive the reaction to completion. Here, we describe a method to reconstitute the folding and membrane integration of bacterial outer membrane (OM) proteins that have a characteristic ß-barrel structure. In this method the BAM complex, a heteroligomer that catalyzes the membrane integration of ß-barrel proteins, is first purified and inserted into small lipid vesicles. Denatured OM proteins are then assembled and integrated into the vesicles in the presence of a molecular chaperone called SurA.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Membrana Celular/metabolismo , Proteínas de Escherichia coli/química , Corpos de Inclusão/metabolismo , Lipossomos/metabolismo
6.
Elife ; 3: e04234, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25182416

RESUMO

Autotransporters are a superfamily of bacterial virulence factors consisting of an N-terminal extracellular ('passenger') domain and a C-terminal ß barrel ('ß') domain that resides in the outer membrane (OM). The mechanism by which the passenger domain is secreted is poorly understood. Here we show that a conserved OM protein insertase (the Bam complex) and a molecular chaperone (SurA) are both necessary and sufficient to promote the complete assembly of the Escherichia coli O157:H7 autotransporter EspP in vitro. Our results indicate that the membrane integration of the ß domain is the rate-limiting step in autotransporter assembly and that passenger domain translocation does not require the input of external energy. Furthermore, experiments using nanodiscs strongly suggest that autotransporter assembly is catalyzed by a single copy of the Bam complex. Finally, we describe a method to purify a highly active form of the Bam complex that should facilitate the elucidation of its function.


Assuntos
Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Fatores de Virulência/isolamento & purificação , Fatores de Virulência/metabolismo , Biocatálise , Proteínas de Escherichia coli/química , Complexos Multiproteicos/isolamento & purificação , Complexos Multiproteicos/metabolismo , Nanoestruturas/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteolipídeos/metabolismo , Fatores de Virulência/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA