Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Europace ; 21(5): 813-821, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30726937

RESUMO

AIMS: Bipolar electrogram (BiEGM)-based substrate maps are heavily influenced by direction of a wavefront to the mapping bipole. In this study, we evaluate high-resolution, orientation-independent peak-to-peak voltage (Vpp) maps obtained with an equi-spaced electrode array and omnipolar EGMs (OTEGMs), measure its beat-to-beat consistency, and assess its ability to delineate diseased areas within the myocardium compared against traditional BiEGMs on two orientations: along (AL) and across (AC) array splines. METHODS AND RESULTS: The endocardium of the left ventricle of 10 pigs (three healthy and seven infarcted) were each mapped using an Advisor™ HD grid with a research EnSite Precision™ system. Cardiac magnetic resonance images with late gadolinium enhancement were registered with electroanatomical maps and were used for gross scar delineation. Over healthy areas, OTEGM Vpp values are larger than AL bipoles by 27% and AC bipoles by 26%, and over infarcted areas OTEGM Vpp values are 23% larger than AL bipoles and 27% larger than AC bipoles (P < 0.05). Omnipolar EGM voltage maps were 37% denser than BiEGM maps. In addition, OTEGM Vpp values are more consistent than bipolar Vpps showing less beat-by-beat variation than BiEGM by 39% and 47% over both infarcted and healthy areas, respectively (P < 0.01). Omnipolar EGM better delineate infarcted areas than traditional BiEGMs from both orientations. CONCLUSION: An equi-spaced electrode grid when combined with omnipolar methodology yielded the largest detectable bipolar-like voltage and is void of directional influences, providing reliable voltage assessment within infarcted and non-infarcted regions of the heart.


Assuntos
Cicatriz , Técnicas Eletrofisiológicas Cardíacas , Coração/fisiopatologia , Infarto do Miocárdio , Miocárdio/patologia , Taquicardia Ventricular , Animais , Cicatriz/complicações , Cicatriz/patologia , Cicatriz/fisiopatologia , Eletrocardiografia/métodos , Técnicas Eletrofisiológicas Cardíacas/instrumentação , Técnicas Eletrofisiológicas Cardíacas/métodos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Prognóstico , Suínos , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/fisiopatologia
2.
Hepatology ; 65(6): 1851-1864, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28152568

RESUMO

The development of different cell culture models has greatly contributed to increased understanding of the hepatitis C virus (HCV) life cycle. However, it is still challenging to grow HCV clinical isolates in cell culture. If overcome, this would open new perspectives to study HCV biology, including drug-resistant variants emerging with new antiviral therapies. In this study we hypothesized that this hurdle could be due to the presence of inhibitory factors in patient serum. Combining polyethylene glycol precipitation, iodixanol gradient, and size-exclusion chromatography, we obtained from HCV-seronegative sera a purified fraction enriched in inhibitory factors. Mass spectrometric analysis identified apolipoprotein(a) (apo[a]) as a potential inhibitor of HCV entry. Apo(a) consists of 10 kringle IV domains (KIVs), one kringle V domain, and an inactive protease domain. The 10 KIVs are present in a single copy with the exception of KIV type 2 (KIV2 ), which is encoded in a variable number of tandemly repeated copies, giving rise to numerous apo(a) size isoforms. In addition, apo(a) covalently links to the apolipoprotein B component of a low-density lipoprotein through a disulfide bridge to form lipoprotein(a). Using a recombinant virus derived from the JFH1 strain, we confirmed that plasma-derived and recombinant lipoprotein(a) as well as purified recombinant apo(a) variants were able to specifically inhibit HCV by interacting with infectious particles. Our results also suggest that small isoforms are less inhibitory than the large ones. Finally, we observed that the lipoprotein moiety of HCV lipoviroparticles was essential for inhibition, whereas functional lysine-binding sites in KIV7 , KIV8 , and KIV10 were not required. CONCLUSIONS: Our results identify apo(a) as an additional component of the lipid metabolism modulating HCV infection. (Hepatology 2017;65:1851-1864).


Assuntos
Hepacivirus/metabolismo , Hepatite C/terapia , Lipoproteína(a)/farmacologia , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cromatografia Líquida/métodos , Hepacivirus/efeitos dos fármacos , Hepatite C/sangue , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Imunoprecipitação , Lisina/metabolismo , Ligação Proteica , Sensibilidade e Especificidade , Relação Estrutura-Atividade
3.
J Biol Chem ; 290(18): 11649-62, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25778403

RESUMO

Elevated levels of lipoprotein(a) (Lp(a)) have been identified as an independent risk factor for coronary heart disease. Plasma Lp(a) levels are reduced by monoclonal antibodies targeting proprotein convertase subtilisin/kexin type 9 (PCSK9). However, the mechanism of Lp(a) catabolism in vivo and the role of PCSK9 in this process are unknown. We report that Lp(a) internalization by hepatic HepG2 cells and primary human fibroblasts was effectively reduced by PCSK9. Overexpression of the low density lipoprotein (LDL) receptor (LDLR) in HepG2 cells dramatically increased the internalization of Lp(a). Internalization of Lp(a) was markedly reduced following treatment of HepG2 cells with a function-blocking monoclonal antibody against the LDLR or the use of primary human fibroblasts from an individual with familial hypercholesterolemia; in both cases, Lp(a) internalization was not affected by PCSK9. Optimal Lp(a) internalization in both hepatic and primary human fibroblasts was dependent on the LDL rather than the apolipoprotein(a) component of Lp(a). Lp(a) internalization was also dependent on clathrin-coated pits, and Lp(a) was targeted for lysosomal and not proteasomal degradation. Our data provide strong evidence that the LDLR plays a role in Lp(a) catabolism and that this process can be modulated by PCSK9. These results provide a direct mechanism underlying the therapeutic potential of PCSK9 in effectively lowering Lp(a) levels.


Assuntos
Lipoproteína(a)/metabolismo , Pró-Proteína Convertases/metabolismo , Receptores de LDL/metabolismo , Serina Endopeptidases/metabolismo , Apolipoproteínas A/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Lipoproteína(a)/sangue , Pró-Proteína Convertase 9 , Transporte Proteico
4.
Circulation ; 132(8): 677-90, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26224810

RESUMO

BACKGROUND: Mendelian randomization studies have highlighted that lipoprotein(a) [Lp(a)] was associated with calcific aortic valve disease (CAVD). Lp(a) transports oxidized phospholipids with a high content in lysophosphatidylcholine. Autotaxin (ATX) transforms lysophosphatidylcholine into lysophosphatidic acid. We hypothesized that ATX-lysophosphatidic acid could promote inflammation/mineralization of the aortic valve. METHODS AND RESULTS: We have documented the expression of ATX in control and mineralized aortic valves. By using different approaches, we have also investigated the role of ATX-lysophosphatidic acid in the mineralization of isolated valve interstitial cells and in a mouse model of CAVD. Enzyme-specific ATX activity was elevated by 60% in mineralized aortic valves in comparison with control valves. Immunohistochemistry studies showed a high level of ATX in mineralized aortic valves, which colocalized with oxidized phospholipids and apolipoprotein(a). We detected a high level of ATX activity in the Lp(a) fraction in circulation. Interaction between ATX and Lp(a) was confirmed by in situ proximity ligation assay. Moreover, we documented that valve interstitial cells also expressed ATX in CAVD. We showed that ATX-lysophosphatidic acid promotes the mineralization of the aortic valve through a nuclear factor κB/interleukin 6/bone morphogenetic protein pathway. In LDLR(-/-)/ApoB(100/100)/IGFII mice, ATX is overexpressed and lysophosphatidic acid promotes a strong deposition of hydroxyapatite of calcium in aortic valve leaflets and accelerates the development of CAVD. CONCLUSIONS: ATX is transported in the aortic valve by Lp(a) and is also secreted by valve interstitial cells. ATX-lysophosphatidic acid promotes inflammation and mineralization of the aortic valve and thus could represent a novel therapeutic target in CAVD.


Assuntos
Estenose da Valva Aórtica/metabolismo , Valva Aórtica/metabolismo , Lipoproteína(a)/biossíntese , Diester Fosfórico Hidrolases/biossíntese , Idoso , Animais , Valva Aórtica/patologia , Estenose da Valva Aórtica/patologia , Feminino , Humanos , Inflamação/metabolismo , Inflamação/patologia , Lipoproteína(a)/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade
5.
BMC Cancer ; 16: 328, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27221823

RESUMO

BACKGROUND: Thrombin activatable fibrinolysis inhibitor (TAFI) is a plasma zymogen, which can be converted to activated TAFI (TAFIa) through proteolytic cleavage by thrombin, plasmin, and most effectively thrombin in complex with the endothelial cofactor thrombomodulin (TM). TAFIa is a carboxypeptidase that cleaves carboxyl terminal lysine and arginine residues from protein and peptide substrates, including plasminogen-binding sites on cell surface receptors. Carboxyl terminal lysine residues play a pivotal role in enhancing cell surface plasminogen activation to plasmin. Plasmin has many critical functions including cleaving components of the extracellular matrix (ECM), which enhances invasion and migration of cancer cells. We therefore hypothesized that TAFIa could act to attenuate metastasis. METHODS: To assess the role of TAFIa in breast cancer metastasis, in vitro migration and invasion assays, live cell proteolysis and cell proliferation using MDA-MB-231 and SUM149 cells were carried out in the presence of a TAFIa inhibitor, recombinant TAFI variants, or soluble TM. RESULTS: Inhibition of TAFIa with potato tuber carboxypeptidase inhibitor increased cell invasion, migration and proteolysis of both cell lines, whereas addition of TM resulted in a decrease in all these parameters. A stable variant of TAFIa, TAFIa-CIIYQ, showed enhanced inhibitory effects on cell invasion, migration and proteolysis. Furthermore, pericellular plasminogen activation was significantly decreased on the surface of MDA-MB-231 and SUM149 cells following treatment with various concentrations of TAFIa. CONCLUSIONS: Taken together, these results indicate a vital role for TAFIa in regulating pericellular plasminogen activation and ultimately ECM proteolysis in the breast cancer microenvironment. Enhancement of TAFI activation in this microenvironment may be a therapeutic strategy to inhibit invasion and prevent metastasis of breast cancer cells.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Carboxipeptidase B2/farmacologia , Movimento Celular , Plasminogênio/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/secundário , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Proteólise , Trombomodulina/metabolismo , Células Tumorais Cultivadas
6.
J Lipid Res ; 56(12): 2273-85, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26474593

RESUMO

Elevated lipoprotein (a) [Lp(a)] levels are a causal risk factor for coronary heart disease. Accumulating evidence suggests that Lp(a) can stimulate cellular inflammatory responses through the kringle-containing apolipoprotein (a) [apo(a)] component. Here, we report that recombinant apo(a) containing 17 kringle (17K) IV domains elicits a dose-dependent increase in interleukin (IL)-8 mRNA and protein expression in THP-1 and U937 macrophages. This effect was blunted by mutation of the lysine binding site in apo(a) kringle IV type 10, which resulted in the loss of oxidized phospholipid (oxPL) on apo(a). Trypsin-digested 17K had the same stimulatory effect on IL-8 expression as intact apo(a), while enzymatic removal of oxPL from apo(a) significantly blunted this effect. Using siRNA to assess candidate receptors, we found that CD36 and TLR2 may play roles in apo(a)-mediated IL-8 stimulation. Downstream of these receptors, inhibitors of MAPKs, Jun N-terminal kinase and ERK1/2, abolished the effect of apo(a) on IL-8 gene expression. To assess the roles of downstream transcription factors, luciferase reporter gene experiments were conducted using an IL-8 promoter fragment. The apo(a)-induced expression of this reporter construct was eliminated by mutation of IL-8 promoter binding sites for either NF-κB or AP-1. Our results provide a mechanistic link between oxPL modification of apo(a) and stimulation of proinflammatory intracellular signaling pathways.


Assuntos
Apolipoproteínas A/metabolismo , Apolipoproteínas/metabolismo , Interleucina-8/metabolismo , Apolipoproteínas/genética , Apolipoproteínas A/genética , Sítios de Ligação , Linhagem Celular , Humanos , Interleucina-8/genética , NF-kappa B/metabolismo , Fosfolipídeos/metabolismo , RNA Interferente Pequeno , Fator de Transcrição AP-1/metabolismo
7.
J Lipid Res ; 55(4): 625-34, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24478033

RESUMO

Apo(a), the distinguishing protein component of lipoprotein(a) [Lp(a)], exhibits sequence similarity to plasminogen and can inhibit binding of plasminogen to cell surfaces. Plasmin generated on the surface of vascular cells plays a role in cell migration and proliferation, two of the fibroproliferative inflammatory events that underlie atherosclerosis. The ability of apo(a) to inhibit pericellular plasminogen activation on vascular cells was therefore evaluated. Two isoforms of apo(a), 12K and 17K, were found to significantly decrease tissue-type plasminogen activator-mediated plasminogen activation on human umbilical vein endothelial cells (HUVECs) and THP-1 monocytes and macrophages. Lp(a) purified from human plasma decreased plasminogen activation on THP-1 monocytes and HUVECs but not on THP-1 macrophages. Removal of kringle V or the strong lysine binding site in kringle IV10 completely abolished the inhibitory effect of apo(a). Treatment with carboxypeptidase B to assess the roles of carboxyl-terminal lysines in cellular receptors leads in most cases to decreases in plasminogen activation as well as plasminogen and apo(a) binding; however, inhibition of plasminogen activation by apo(a) was unaffected. Our findings directly demonstrate that apo(a) inhibits pericellular plasminogen activation in all three cell types, although binding of apo(a) to cell-surface receptors containing carboxyl-terminal lysines does not appear to play a major role in the inhibition mechanism.


Assuntos
Apolipoproteínas A/fisiologia , Plasminogênio/fisiologia , Apolipoproteínas A/química , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana , Humanos , Leucócitos Mononucleares/metabolismo , Lisina/fisiologia , Macrófagos/metabolismo , Ativadores de Plasminogênio/química , Ativadores de Plasminogênio/farmacologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas
8.
Biomolecules ; 14(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38254663

RESUMO

The transplantation of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) has shown promise in preclinical models of myocardial infarction, but graft myocardium exhibits incomplete host-graft electromechanical integration and a propensity for pro-arrhythmic behavior. Perhaps contributing to this situation, hPSC-CM grafts show low expression of connexin 43 (Cx43), the major gap junction (GJ) protein, in ventricular myocardia. We hypothesized that Cx43 expression and function could be rescued by engineering Cx43 in hPSC-CMs with a series of phosphatase-resistant mutations at three casein kinase 1 phosphorylation sites (Cx43-S3E) that have been previously reported to stabilize Cx43 GJs and reduce arrhythmias in transgenic mice. However, contrary to our predictions, transgenic Cx43-S3E hPSC-CMs exhibited reduced Cx43 expression relative to wild-type cells, both at baseline and following ischemic challenge. Cx43-S3E hPSC-CMs showed correspondingly slower conduction velocities, increased automaticity, and differential expression of other connexin isoforms and various genes involved in cardiac excitation-contraction coupling. Cx43-S3E hPSC-CMs also had phosphorylation marks associated with Cx43 GJ internalization, a finding that may account for their impaired GJ localization. Taken collectively, our data indicate that the Cx43-S3E mutation behaves differently in hPSC-CMs than in adult mouse ventricular myocytes and that multiple biological factors likely need to be addressed synchronously to ensure proper Cx43 expression, localization, and function.


Assuntos
Caseína Quinase I , Conexina 43 , Miócitos Cardíacos , Adulto , Animais , Humanos , Camundongos , Caseína Quinase I/genética , Conexina 43/genética , Conexinas , Junções Comunicantes , Camundongos Transgênicos , Mutação
9.
Stem Cell Res Ther ; 14(1): 330, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964388

RESUMO

BACKGROUND: A non-invasive imaging technology that can monitor cell viability, retention, distribution, and interaction with host tissue after transplantation is needed for optimizing and translating stem cell-based therapies. Current cell imaging approaches are limited in sensitivity or specificity, or both, for in vivo cell tracking. The objective of this study was to apply a novel ferritin-based magnetic resonance imaging (MRI) platform to longitudinal tracking of human embryonic stem cells (hESCs) in vivo. METHODS: Human embryonic stem cells (hESCs) were genetically modified to stably overexpress ferritin using the CRISPR-Cas9 system. Cellular toxicity associated with ferritin overexpression and manganese (Mn) supplementation were assessed based on cell viability, proliferation, and metabolic activity. Ferritin-overexpressing hESCs were characterized based on stem cell pluripotency and cardiac-lineage differentiation capability. Cells were supplemented with Mn and imaged in vitro as cell pellets on a preclinical 3 T MR scanner. T1-weighted images and T1 relaxation times were analyzed to assess contrast. For in vivo study, three million cells were injected into the leg muscle of non-obese diabetic severe combined immunodeficiency (NOD SCID) mice. Mn was administrated subcutaneously. T1-weighted sequences and T1 mapping were used to image the animals for longitudinal in vivo cell tracking. Cell survival, proliferation, and teratoma formation were non-invasively monitored by MRI. Histological analysis was used to validate MRI results. RESULTS: Ferritin-overexpressing hESCs labeled with 0.1 mM MnCl2 provided significant T1-induced bright contrast on in vitro MRI, with no adverse effect on cell viability, proliferation, pluripotency, and differentiation into cardiomyocytes. Transplanted hESCs displayed significant bright contrast on MRI 24 h after Mn administration, with contrast persisting for 5 days. Bright contrast was recalled at 4-6 weeks with early teratoma outgrowth. CONCLUSIONS: The bright-ferritin platform provides the first demonstration of longitudinal cell tracking with signal recall, opening a window on the massive cell death that hESCs undergo in the weeks following transplantation before the surviving cell fraction proliferates to form teratomas.


Assuntos
Células-Tronco Embrionárias Humanas , Teratoma , Camundongos , Animais , Humanos , Células-Tronco Embrionárias Humanas/patologia , Ferritinas/genética , Camundongos SCID , Imageamento por Ressonância Magnética/métodos , Células-Tronco Embrionárias
10.
Methods Mol Biol ; 2485: 191-212, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35618907

RESUMO

The transplantation of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) has garnered significant attention as a potential means of restoring lost muscle mass and contractile function in injured hearts. Early preclinical work with hPSC-CMs employed rodent models, but the field has recently advanced to transplantation studies in more translationally relevant large animal models including non-human primates and swine. The pig is a particularly attractive model for such studies because the size, structure, and physiology of the porcine heart is very similar to that of humans. The pig model has reasonably high throughput, is readily amenable to clinically available cell delivery methods and imaging modalities and has been used frequently to test the safety and efficacy of new cardiac therapies. Here, we describe methods that were established in our laboratory for the specific purpose of testing hPSC-CM transplantation in a pig model of subacute myocardial infarction, but these same techniques should be broadly applicable to the transepicardial delivery of other biologicals including other candidate cell populations, biomaterials, and/or viral vectors.


Assuntos
Infarto do Miocárdio , Células-Tronco Pluripotentes , Animais , Diferenciação Celular , Infarto do Miocárdio/terapia , Miócitos Cardíacos , Transplante de Células-Tronco/métodos , Suínos
11.
Sci Transl Med ; 12(562)2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967972

RESUMO

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offer an unprecedented opportunity to remuscularize infarcted human hearts. However, studies have shown that most hiPSC-CMs do not survive after transplantation into the ischemic myocardial environment, limiting their regenerative potential and clinical application. We established a method to improve hiPSC-CM survival by cotransplanting ready-made microvessels obtained from adipose tissue. Ready-made microvessels promoted a sixfold increase in hiPSC-CM survival and superior functional recovery when compared to hiPSC-CMs transplanted alone or cotransplanted with a suspension of dissociated endothelial cells in infarcted rat hearts. Microvessels showed unprecedented persistence and integration at both early (~80%, week 1) and late (~60%, week 4) time points, resulting in increased vessel density and graft perfusion, and improved hiPSC-CM maturation. These findings provide an approach to cell-based therapies for myocardial infarction, whereby incorporation of ready-made microvessels can improve functional outcomes in cell replacement therapies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Infarto do Miocárdio , Animais , Diferenciação Celular , Células Endoteliais , Humanos , Microvasos , Infarto do Miocárdio/terapia , Miócitos Cardíacos , Ratos
12.
Stem Cell Res Ther ; 11(1): 417, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32988411

RESUMO

BACKGROUND: Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) show tremendous promise for cardiac regeneration, but the successful development of hESC-CM-based therapies requires improved tools to investigate their electrical behavior in recipient hearts. While optical voltage mapping is a powerful technique for studying myocardial electrical activity ex vivo, we have previously shown that intra-cardiac hESC-CM grafts are not labeled by conventional voltage-sensitive fluorescent dyes. We hypothesized that the water-soluble voltage-sensitive dye di-2-ANEPEQ would label engrafted hESC-CMs and thereby facilitate characterization of graft electrical function and integration. METHODS: We developed and validated a novel optical voltage mapping strategy based on the simultaneous imaging of the calcium-sensitive fluorescent protein GCaMP3, a graft-autonomous reporter of graft activation, and optical action potentials (oAPs) derived from di-2-ANEPEQ, which labels both graft and host myocardium. Cardiomyocytes from three different GCaMP3+ hESC lines (H7, RUES2, or ESI-17) were transplanted into guinea pig models of subacute and chronic infarction, followed by optical mapping at 2 weeks post-transplantation. RESULTS: Use of a water-soluble voltage-sensitive dye revealed pro-arrhythmic properties of GCaMP3+ hESC-CM grafts from all three lines including slow conduction velocity, incomplete host-graft coupling, and spatially heterogeneous patterns of activation that varied beat-to-beat. GCaMP3+ hESC-CMs from the RUES2 and ESI-17 lines both showed prolonged oAP durations both in vitro and in vivo. Although hESC-CMs partially remuscularize the injured hearts, histological evaluation revealed immature graft structure and impaired gap junction expression at this early timepoint. CONCLUSION: Simultaneous imaging of GCaMP3 and di-2-ANEPEQ allowed us to acquire the first unambiguously graft-derived oAPs from hESC-CM-engrafted hearts and yielded critical insights into their arrhythmogenic potential and line-to-line variation.


Assuntos
Células-Tronco Embrionárias Humanas , Miócitos Cardíacos , Animais , Diferenciação Celular , Células-Tronco Embrionárias , Cobaias , Miocárdio
13.
Stem Cell Reports ; 12(5): 967-981, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31056479

RESUMO

Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) show considerable promise for regenerating injured hearts, and we therefore tested their capacity to stably engraft in a translationally relevant preclinical model, the infarcted pig heart. Transplantation of immature hESC-CMs resulted in substantial myocardial implants within the infarct scar that matured over time, formed vascular networks with the host, and evoked minimal cellular rejection. While arrhythmias were rare in infarcted pigs receiving vehicle alone, hESC-CM recipients experienced frequent monomorphic ventricular tachycardia before reverting back to normal sinus rhythm by 4 weeks post transplantation. Electroanatomical mapping and pacing studies implicated focal mechanisms, rather than macro-reentry, for these graft-related tachyarrhythmias as evidenced by an abnormal centrifugal pattern with earliest electrical activation in histologically confirmed graft tissue. These findings demonstrate the suitability of the pig model for the preclinical development of a hESC-based cardiac therapy and provide new insights into the mechanistic basis of electrical instability following hESC-CM transplantation.


Assuntos
Arritmias Cardíacas/diagnóstico , Células-Tronco Embrionárias Humanas/citologia , Infarto do Miocárdio/terapia , Miócitos Cardíacos/citologia , Regeneração/fisiologia , Transplante de Células-Tronco/métodos , Taquicardia/diagnóstico , Animais , Arritmias Cardíacas/etiologia , Diferenciação Celular/fisiologia , Sobrevivência Celular/fisiologia , Eletroencefalografia , Xenoenxertos , Humanos , Imageamento por Ressonância Magnética , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/fisiopatologia , Transplante de Células-Tronco/efeitos adversos , Suínos , Taquicardia/etiologia
14.
Thromb Res ; 169: 1-7, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29990619

RESUMO

Lipoprotein(a) [Lp(a)] is an enigmatic lipoprotein which has been identified as a causal risk factor for coronary heart disease and calcific aortic valve disease. Lp(a) consists of a low-density lipoprotein (LDL) moiety covalently linked to the unique glycoprotein apolipoprotein(a) [apo(a)]. Apo(a) is homologous to the fibrinolytic zymogen plasminogen and thus may interfere with plasminogen activation. Conversion of native Glu-plasminogen by plasmin to the more readily activatable Lys-plasminogen greatly accelerates plasminogen activation and is necessary for optimal stimulation of plasminogen activation on endothelial cells. Lp(a)/apo(a) has been previously shown to inhibit pericellular plasminogen activation on vascular cells, but the mechanism underling these observations is unknown. We therefore explored whether apo(a) can inhibit pericellular Glu- to Lys-plasminogen conversion on cell surfaces. A physiologically relevant recombinant version of apo(a) (17K) significantly inhibits plasmin-mediated Glu- to Lys-plasminogen conversion on human umbilical vein endothelial cells (HUVECs) and smooth muscle cells (SMCs). All isoforms of apo(a) that were analyzed, ranging in size from 3 to 21 kringle IV type 2 repeats, were able to inhibit conversion to a similar extent. Removal of the kringle V and protease domain of apo(a) strongly reduces the ability of apo(a) to inhibit conversion on HUVECs and SMCs. Removing the strong lysine binding site in KIV10 of apo(a) abolishes its ability to inhibit conversion on HUVECs and, to a lesser extent, on SMCs. These results indicate a novel mechanism in which apo(a) inhibits the positive feedback mechanism that accelerates plasmin formation on vascular cells.


Assuntos
Apolipoproteínas A/metabolismo , Endotélio Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fragmentos de Peptídeos/metabolismo , Plasminogênio/metabolismo , Linhagem Celular , Fibrinolisina/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos
15.
Atherosclerosis ; 275: 11-21, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29852400

RESUMO

BACKGROUND AND AIMS: Lipoprotein(a) (Lp(a)) is a causal risk factor for cardiovascular disorders including coronary heart disease and calcific aortic valve stenosis. Apolipoprotein(a) (apo(a)), the unique glycoprotein component of Lp(a), contains sequences homologous to plasminogen. Plasminogen activation is markedly accelerated in the presence of cell surface receptors and can be inhibited in this context by apo(a). METHODS: We evaluated the role of potential receptors in regulating plasminogen activation and the ability of apo(a) to mediate inhibition of plasminogen activation on vascular and monocytic/macrophage cells through knockdown (siRNA or blocking antibodies) or overexpression of various candidate receptors. Binding assays were conducted to determine apo(a) and plasminogen receptor interactions. RESULTS: The urokinase-type plasminogen activator receptor (uPAR) modulates plasminogen activation as well as plasminogen and apo(a) binding on human umbilical vein endothelial cells (HUVECs), human acute monocytic leukemia (THP-1) cells, and THP-1 macrophages as determined through uPAR knockdown and overexpression. Apo(a) variants lacking either the kringle V or the strong lysine binding site in kringle IV type 10 are not able to bind to uPAR to the same extent as wild-type apo(a). Plasminogen activation is also modulated, albeit to a lower extent, through the Mac-1 (αMß2) integrin on HUVECs and THP-1 monocytes. Integrin αVß3 can regulate plasminogen activation on THP-1 monocytes and to a lesser extent on HUVECs. CONCLUSIONS: These results indicate cell type-specific roles for uPAR, αMß2, and αVß3 in promoting plasminogen activation and mediate the inhibitory effects of apo(a) in this process.


Assuntos
Apoproteína(a)/metabolismo , Células Endoteliais da Veia Umbilical Humana/enzimologia , Integrina alfaVbeta3/metabolismo , Antígeno de Macrófago 1/metabolismo , Macrófagos/enzimologia , Monócitos/enzimologia , Plasminogênio/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Ativação Enzimática , Humanos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Transdução de Sinais , Células THP-1
16.
Curr Opin Biotechnol ; 47: 43-50, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28633074

RESUMO

Because the heart is a poorly regenerative organ, there has been considerable interest in developing novel cell-based approaches to restore lost contractile function after myocardial infarction (MI). While a wide variety of candidate cell types have been tested in animal MI models, the vast majority of clinical trials have used adult stem cell types, usually derived from bone marrow. These studies have generally yielded disappointing results, an outcome that may reflect in part the limited cardiogenic potential of the adult stem cell sources employed. Post-MI heart failure is ultimately a disease of cardiomyocyte deficiency, so better outcomes may be possible with more cardiogenic approaches that may 'remuscularize' the infarct scar with new, electrically-integrated myocardium. In this review, we summarize work in the field to 'program' exogenous or endogenous cells into such a cardiogenic state, as well as efforts to test their capacity to mediate true heart regeneration.


Assuntos
Reprogramação Celular , Coração/fisiologia , Regeneração , Células-Tronco Adultas/citologia , Animais , Diferenciação Celular , Humanos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/transplante
17.
PLoS One ; 12(7): e0180869, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28750079

RESUMO

Elevated plasma concentrations of lipoprotein(a) (Lp(a)) are a causal risk factor for cardiovascular disease. The mechanisms underlying Lp(a) clearance from plasma remain unclear, which is an obvious barrier to the development of therapies to specifically lower levels of this lipoprotein. Recently, it has been documented that monoclonal antibody inhibitors of proprotein convertase subtilisin/kexin type 9 (PCSK9) can lower plasma Lp(a) levels by 30%. Since PCSK9 acts primarily through the low density lipoprotein receptor (LDLR), this result is in conflict with the prevailing view that the LDLR does not participate in Lp(a) clearance. To support our recent findings in HepG2 cells that the LDLR can act as a bona fide receptor for Lp(a) whose effects are sensitive to PCSK9, we undertook a series of Lp(a) internalization experiments using different hepatic cells, with different variants of PCSK9, and with different members of the LDLR family. We found that PCSK9 decreased Lp(a) and/or apo(a) internalization by Huh7 human hepatoma cells and by primary mouse and human hepatocytes. Overexpression of human LDLR appeared to enhance apo(a)/Lp(a) internalization in both types of primary cells. Importantly, internalization of Lp(a) by LDLR-deficient mouse hepatocytes was not affected by PCSK9, but the effect of PCSK9 was restored upon overexpression of human LDLR. In HepG2 cells, Lp(a) internalization was decreased by gain-of-function mutants of PCSK9 more than by wild-type PCSK9, and a loss-of function variant had a reduced ability to influence Lp(a) internalization. Apo(a) internalization by HepG2 cells was not affected by apo(a) isoform size. Finally, we showed that very low density lipoprotein receptor (VLDLR), LDR-related protein (LRP)-8, and LRP-1 do not play a role in Lp(a) internalization or the effect of PCSK9 on Lp(a) internalization. Our findings are consistent with the idea that PCSK9 inhibits Lp(a) clearance through the LDLR, but do not exclude other effects of PCSK9 such as on Lp(a) biosynthesis.


Assuntos
Endocitose , Lipoproteína(a)/metabolismo , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/metabolismo , Animais , Apolipoproteínas A/metabolismo , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Mutação/genética , Isoformas de Proteínas/metabolismo
20.
Mol Biol Cell ; 24(3): 210-21, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23243000

RESUMO

Lipoprotein(a) (Lp(a)) is associated with cardiovascular disease risk. This may be attributable to the ability of Lp(a) to elicit endothelial dysfunction. We previously reported that apolipoprotein(a) (apo(a); the distinguishing kringle-containing component of Lp(a)) elicits cytoskeletal rearrangements in vascular endothelial cells, resulting in increased cellular permeability. These effects require a strong lysine-binding site (LBS) in apo(a). We now report that apo(a) induces both nuclear ß-catenin-mediated cyclooxygenase-2 (COX-2) expression and prostaglandin E2 secretion, indicating a proinflammatory role for Lp(a). Apo(a) caused the disruption of VE-cadherin/ß-catenin complexes in a Src-dependent manner, decreased ß-catenin phosphorylation, and increased phosphorylation of Akt and glycogen synthase kinase-3ß, ultimately resulting in increased nuclear translocation of ß-catenin; all of these effects are downstream of apo(a) attenuation of phosphatase and tensin homologue deleted on chromosome 10 activity. The ß-catenin-mediated effects of apo(a) on COX-2 expression were absent using a mutant apo(a) lacking the strong LBS. Of interest, the normal and LBS mutant forms of apo(a) bound to human umbilical vein endothelial cells in a similar manner, and the binding of neither was affected by lysine analogues. Taken together, our findings suggest a novel mechanism by which apo(a) can induce proinflammatory and proatherosclerotic effects through modulation of vascular endothelial cell function.


Assuntos
Apoproteína(a)/fisiologia , Núcleo Celular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , beta Catenina/metabolismo , Antígenos CD/metabolismo , Aterosclerose/metabolismo , Sítios de Ligação , Caderinas/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Indução Enzimática , Células HEK293 , Humanos , Mediadores da Inflamação/fisiologia , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Plasminogênio/fisiologia , Ligação Proteica , Isoformas de Proteínas/fisiologia , Transporte Proteico , Proteólise , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA