RESUMO
ABSTRACT: The progression of chronic kidney disease results from the accumulation of extracellular matrix leading to end-stage renal disease. We previously demonstrated that a broad-spectrum matrix metalloproteinase (MMP) inhibitor reduced renal injury in rat models of hypertension and diabetes. However, the isoforms and mechanisms involved are unclear. This study examined the role of MMP2 during the development of proteinuria and renal injury after induction of hypertension or diabetes in Dahl salt-sensitive (SS) and MMP2 knockout (KO) rats. Mean arterial pressure rose from 115 ± 2 to 145 ± 2 mm Hg and 116 ± 1 to 152 ± 3 mm Hg in MMP2 KO and SS rats fed a high-salt (8% NaCl) diet for 3 weeks. The degree of proteinuria, glomerular injury, renal fibrosis, and podocyte loss was lower in MMP2 KO rats than in SS rats. Blood glucose and HbA1c levels, and mean arterial pressure rose to the same extent in streptozotocin-treated SS and MMP2 KO rats. However, the degree of proteinuria, glomerulosclerosis, renal fibrosis, renal hypertrophy, glomerular permeability to albumin, and the renal expression of MMP2 and TGFß1 were significantly reduced in MMP2 KO rats. Glomerular filtration rate fell by 33% after 12 weeks of diabetes in streptozotocin-treated SS rats compared with time-control rats, but glomerular filtration rate only fell by 12% in MMP2 KO rats. These results indicate that activation of MMP2 plays an essential role in the pathogenesis of hypertensive and diabetic nephropathy and suggests that an MMP2 inhibitor might slow the progression of chronic kidney disease.
Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Hipertensão , Insuficiência Renal Crônica , Ratos , Animais , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Estreptozocina/metabolismo , Ratos Endogâmicos Dahl , Hipertensão/metabolismo , Rim , Proteinúria/genética , Proteinúria/metabolismo , Insuficiência Renal Crônica/complicações , Fibrose , Pressão Sanguínea , Cloreto de Sódio na Dieta , Diabetes Mellitus/metabolismoRESUMO
Hypertension is a leading risk factor for stroke, heart disease, chronic kidney disease, vascular cognitive impairment, and Alzheimer's disease. Previous genetic studies have nominated hundreds of genes linked to hypertension, and renal and cognitive diseases. Some have been advanced as candidate genes by showing that they can alter blood pressure or renal and cerebral vascular function in knockout animals; however, final validation of the causal variants and underlying mechanisms has remained elusive. This review chronicles 40 years of work, from the initial identification of adducin (ADD) as an ACTIN-binding protein suggested to increase blood pressure in Milan hypertensive rats, to the discovery of a mutation in ADD1 as a candidate gene for hypertension in rats that were subsequently linked to hypertension in man. More recently, a recessive K572Q mutation in ADD3 was identified in Fawn-Hooded Hypertensive (FHH) and Milan Normotensive (MNS) rats that develop renal disease, which is absent in resistant strains. ADD3 dimerizes with ADD1 to form functional ADD protein. The mutation in ADD3 disrupts a critical ACTIN-binding site necessary for its interactions with actin and spectrin to regulate the cytoskeleton. Studies using Add3 KO and transgenic strains, as well as a genetic complementation study in FHH and MNS rats, confirmed that the K572Q mutation in ADD3 plays a causal role in altering the myogenic response and autoregulation of renal and cerebral blood flow, resulting in increased susceptibility to hypertension-induced renal disease and cerebral vascular and cognitive dysfunction.
Assuntos
Proteínas de Ligação a Calmodulina/genética , Predisposição Genética para Doença/genética , Hipertensão Renal/genética , Hipertensão/genética , Nefrite/genética , Medicina de Precisão/métodos , Animais , Pressão Sanguínea/genética , Disfunção Cognitiva/genética , Modelos Animais de Doenças , Homeostase/genética , Humanos , Mutação , Medicina de Precisão/tendências , Ratos , Circulação Renal/genéticaRESUMO
Diabetes mellitus (DM) is a leading risk factor for age-related dementia, but the mechanisms involved are not well understood. We previously discovered that hyperglycemia induced impaired myogenic response (MR) and cerebral blood flow (CBF) autoregulation in 18-mo-old DM rats associated with blood-brain barrier (BBB) leakage, impaired neurovascular coupling, and cognitive impairment. In the present study, we examined whether reducing plasma glucose with a sodium-glucose cotransporter-2 inhibitor (SGLT2i) luseogliflozin can ameliorate cerebral vascular and cognitive function in diabetic rats. Plasma glucose and HbA1c levels of 18-mo-old DM rats were reduced, and blood pressure was not altered after treatment with luseogliflozin. SGLT2i treatment restored the impaired MR of middle cerebral arteries (MCAs) and parenchymal arterioles and surface and deep cortical CBF autoregulation in DM rats. Luseogliflozin treatment also rescued neurovascular uncoupling, reduced BBB leakage and cognitive deficits in DM rats. However, SGLT2i did not have direct constrictive effects on vascular smooth muscle cells and MCAs isolated from normal rats, although it decreased reactive oxygen species production in cerebral vessels of DM rats. These results provide evidence that normalization of hyperglycemia with an SGLT2i can reverse cerebrovascular dysfunction and cognitive impairments in rats with long-standing hyperglycemia, possibly by ameliorating oxidative stress-caused vascular damage.NEW & NOTEWORTHY This study demonstrates that luseogliflozin, a sodium-glucose cotransporter-2 inhibitor, improved CBF autoregulation in association with reduced vascular oxidative stress and AGEs production in the cerebrovasculature of 18-mo-old DM rats. SGLT2i also prevented BBB leakage, impaired functional hyperemia, neurodegeneration, and cognitive impairment seen in DM rats. Luseogliflozin did not have direct constrictive effects on VSMCs and MCAs isolated from normal rats. These results provide evidence that normalization of hyperglycemia with an SGLT2i can reverse cerebrovascular dysfunction and cognitive impairments in rats with long-standing hyperglycemia, possibly by ameliorating oxidative stress-caused vascular damage.
Assuntos
Demência Vascular/tratamento farmacológico , Angiopatias Diabéticas/tratamento farmacológico , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Sorbitol/análogos & derivados , Animais , Arteríolas/efeitos dos fármacos , Arteríolas/fisiopatologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/fisiopatologia , Células Cultivadas , Circulação Cerebrovascular , Cognição , Masculino , Artéria Cerebral Média/efeitos dos fármacos , Artéria Cerebral Média/fisiopatologia , Ratos , Ratos Sprague-Dawley , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Sorbitol/farmacologia , Sorbitol/uso terapêuticoRESUMO
ABSTRACT: Septic shock is life-threatening organ dysfunction due to a dysregulated response to infection. It is a leading cause of death caused by the excessive release of cytokines and inflammatory mediators in response to bacterial endotoxins. It produces hypotension refractory to vasoconstrictors leading to tissue hypoperfusion and multiple organ failure. Despite intensive investigation, there still are no specific pharmacologic treatments. Current therapy relies on supportive care, including antibiotics, fluid resuscitation, corticosteroids, and pressor agents. This commentary summarizes little-known previous observations that inhibition of vascular 20-hydroxyeicosatetraenoic acid (20-HETE) by nitric oxide plays a key role in sepsis. It also highlights the new and exciting current report by Tunctan et al (2022) in this issue of Journal of Cardiovascular Pharmacology that administration of a 20-HETE mimetic can prevent lipopolysaccharide-induced vascular hyporeactivity, hypotension, and tachycardia in rats by activating the recently discovered GPR75/20-HETE receptor. Overall, these results provide a compelling case for initiating 20-HETE clinical trials to prevent hypotension, multiple organ failure, and death in septic shock.
Assuntos
Hipotensão , Sepse , Choque Séptico , Animais , Hipotensão/induzido quimicamente , Insuficiência de Múltiplos Órgãos , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos , Choque Séptico/tratamento farmacológicoRESUMO
We recently reported that the enhanced susceptibility to chronic kidney disease (CKD) in the fawn-hooded hypertensive (FHH) rat is caused, at least in part, by a mutation in γ-adducin (ADD3) that attenuates renal vascular function. The present study explored whether Add3 contributes to the modulation of podocyte structure and function using FHH and FHH.Add3 transgenic rats. The expression of ADD3 on the membrane of primary podocytes isolated from FHH was reduced compared with FHH.Add3 transgenic rats. We found that F-actin nets, which are typically localized in the lamellipodia, replaced unbranched stress fibers in conditionally immortalized mouse podocytes transfected with Add3 Dicer-substrate short interfering RNA (DsiRNA) and primary podocytes isolated from FHH rats. There were increased F/G-actin ratios and expression of the Arp2/3 complexes throughout FHH podocytes in association with reduced synaptopodin and RhoA but enhanced Rac1 and CDC42 expression in the renal cortex, glomeruli, and podocytes of FHH rats. The expression of nephrin at the slit diaphragm and the levels of focal adhesion proteins integrin-α3 and integrin-ß1 were decreased in the glomeruli of FHH rats. Cell migration was enhanced and adhesion was reduced in podocytes of FHH rats as well as in immortalized mouse podocytes transfected with Add3 DsiRNA. Mean arterial pressures were similar in FHH and FHH.Add3 transgenic rats at 16 wk of age; however, FHH rats exhibited enhanced proteinuria associated with podocyte foot process effacement. These results demonstrate that reduced ADD3 function in FHH rats alters baseline podocyte pathophysiology by rearrangement of the actin cytoskeleton at the onset of proteinuria in young animals.
Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Hipertensão/metabolismo , Podócitos/metabolismo , Proteinúria/metabolismo , Insuficiência Renal Crônica/metabolismo , Citoesqueleto de Actina/patologia , Animais , Pressão Arterial , Proteínas de Ligação a Calmodulina/genética , Adesão Celular , Linhagem Celular , Movimento Celular , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Adesões Focais/metabolismo , Adesões Focais/patologia , Hipertensão/genética , Hipertensão/patologia , Hipertensão/fisiopatologia , Integrinas/metabolismo , Masculino , Camundongos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Podócitos/patologia , Proteinúria/genética , Proteinúria/patologia , Proteinúria/fisiopatologia , Ratos Endogâmicos , Ratos Transgênicos , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/fisiopatologia , Transdução de SinaisRESUMO
Diabetes mellitus (DM) is one of the primary pathological factors that contributes to aging-related cognitive impairments, but the underlying mechanisms remain unclear. We recently reported that old DM rats exhibited impaired myogenic responses of the cerebral arteries and arterioles, poor cerebral blood flow autoregulation, enhanced blood-brain barrier (BBB) leakage, and cognitive impairments. These changes were associated with diminished vascular smooth muscle cell contractile capability linked to elevated reactive oxygen species (ROS) and reduced ATP production. In the present study, using a nonobese T2DN DM rat, we isolated parenchymal arterioles (PAs), cultured cerebral microvascular pericytes, and examined whether cerebrovascular pericyte in DM is damaged and whether pericyte dysfunction may play a role in the regulation of cerebral hemodynamics and BBB integrity. We found that ROS and mitochondrial superoxide production were elevated in PAs isolated from old DM rats and in high glucose (HG)-treated α-smooth muscle actin-positive pericytes. HG-treated pericytes displayed decreased contractile capability in association with diminished mitochondrial respiration and ATP production. Additionally, the expression of advanced glycation end products, transforming growth factor-ß, vascular endothelial growth factor, and fibronectin were enhanced, but claudin 5 and integrin ß1 was reduced in the brain of old DM rats and HG-treated pericytes. Further, endothelial tight junction and pericyte coverage on microvessels were reduced in the cortex of old DM rats. These results demonstrate our previous findings that the impaired cerebral hemodynamics and BBB leakage and cognitive impairments in the same old DM model are associated with hyperglycemia-induced cerebrovascular pericyte dysfunction.NEW & NOTEWORTHY This study demonstrates that the loss of contractile capability in pericytes in diabetes is associated with enhanced ROS and reduced ATP production. Enhanced advanced glycation end products (AGEs) in diabetes accompany with reduced pericyte and endothelial tight junction coverage in the cortical capillaries of old diabetic rats. These results suggest our previous findings that the impaired cerebral hemodynamics, BBB leakage, and cognitive impairments in old DM model are associated with hyperglycemia-induced cerebrovascular pericyte dysfunction.
Assuntos
Envelhecimento/metabolismo , Diabetes Mellitus/metabolismo , Junções Comunicantes/metabolismo , Hiperglicemia/complicações , Pericitos/metabolismo , Trifosfato de Adenosina/metabolismo , Envelhecimento/patologia , Animais , Arteríolas/citologia , Arteríolas/metabolismo , Arteríolas/fisiopatologia , Encéfalo/irrigação sanguínea , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Células Cultivadas , Diabetes Mellitus/etiologia , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Masculino , Pericitos/fisiologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , VasoconstriçãoRESUMO
Lysophosphatidic acid (LPA) is a bioactive lipid mediator that has been implicated in the pathophysiology of kidney disease. However, few studies have attempted to measure changes in the levels of various LPA species in the kidney after the development of renal disease. The present study measured the renal LPA levels during the development of kidney disease in rat models of hypertension, diabetes, and obstructive nephropathy using liquid chromatography/mass spectrometry/mass spectrometry. LPA levels (sum of 16:0, 18:0, 18:1, 18:2, and 20:4 LPA) were higher in the renal cortex of hypertensive Dahl salt-sensitive (Dahl S) rats fed a high-salt diet than those in normotensive rats fed a low-salt diet (296.6 ± 22.9 vs. 196.3 ± 8.5 nmol/g protein). LPA levels were elevated in the outer medulla of the kidney of streptozotocin-induced type 1 diabetic Dahl S rats compared with control rats (624.6 ± 129.5 vs. 318.8 ± 17.1 nmol/g protein). LPA levels were also higher in the renal cortex of 18-month-old, type 2 diabetic nephropathy (T2DN) rats with more severe renal injury than in 6-month-old T2DN rats (184.9 ± 20.9 vs. 116.9 ± 6.0 nmol/g protein). LPA levels also paralleled the progression of renal fibrosis in the renal cortex of Sprague-Dawley rats after unilateral ureteral obstruction (UUO). Administration of an LPA receptor antagonist, Ki16425, reduced the degree of renal fibrosis in UUO rats. These results suggest that the production of renal LPA increases during the development of renal injury and contributes to renal fibrosis. SIGNIFICANCE STATEMENT: The present study reveals that the lysophosphatidic acid (LPA) levels increase in the kidney in rat models of hypertension, diabetes, and obstructive nephropathy, and administration of an LPA receptor antagonist attenuates renal fibrosis. Therapeutic approaches that target the formation or actions of renal LPA might be renoprotective and have therapeutic potential.
Assuntos
Nefropatias Diabéticas/metabolismo , Hipertensão Renal/metabolismo , Lisofosfolipídeos/metabolismo , Animais , Nefropatias Diabéticas/patologia , Fibrose , Hipertensão Renal/patologia , Isoxazóis/farmacologia , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Lisofosfolipídeos/antagonistas & inibidores , Masculino , Propionatos/farmacologia , Ratos , Ratos Endogâmicos Dahl , Ratos Sprague-DawleyRESUMO
Previous studies identified a region on chromosome 1 associated with NG-nitro-L-arginine methyl ester (L-NAME) hypertension-induced renal disease in fawn-hooded hypertensive (FHH) rats. This region contains a mutant γ-adducin (Add3) gene that impairs renal blood flow (RBF) autoregulation, but its contribution to renal injury is unknown. The present study evaluated the hypothesis that knockout (KO) of Add3 impairs the renal vasoconstrictor response to the blockade of nitric oxide synthase and enhances hypertension-induced renal injury after chronic administration of L-NAME plus a high-salt diet. The acute hemodynamic effect of L-NAME and its chronic effects on hypertension and renal injury were compared in FHH 1Brown Norway (FHH 1BN) congenic rats (WT) expressing wild-type Add3 gene versus FHH 1BN Add3 KO rats. RBF was well autoregulated in WT rats but impaired in Add3 KO rats. Acute administration of L-NAME (10 mg/kg) raised mean arterial pressure (MAP) similarly in both strains, but RBF and glomerular filtration rate (GFR) fell by 38% in WT versus 15% in Add3 KO rats. MAP increased similarly in both strains after chronic administration of L-NAME and a high-salt diet; however, proteinuria and renal injury were greater in Add3 KO rats than in WT rats. Surprisingly, RBF, GFR, and glomerular capillary pressure were 41%, 82%, and 13% higher in L-NAME-treated Add3 KO rats than in WT rats. Hypertensive Add3 KO rats exhibited greater loss of podocytes and glomerular nephrin expression and increased interstitial fibrosis than in WT rats. These findings indicate that loss of ADD3 promotes L-NAME-induced renal injury by altering renal hemodynamics and enhancing the transmission of pressure to glomeruli. SIGNIFICANCE STATEMENT: A mutation in the γ-adducin (Add3) gene in fawn-hooded hypertensive rats that impairs autoregulation of renal blood flow is in a region of rat chromosome 1 homologous to a locus on human chromosome 10 associated with diabetic nephropathy. The present results indicate that loss of ADD3 enhanced NG-nitro-L-arginine methyl ester-induced hypertensive renal injury by altering the transmission of pressure to the glomerulus.
Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Hipertensão Renal/metabolismo , Insuficiência Renal Crônica/metabolismo , Animais , Pressão Sanguínea , Proteínas de Ligação a Calmodulina/genética , Inibidores Enzimáticos/toxicidade , Deleção de Genes , Taxa de Filtração Glomerular , Homeostase , Hipertensão Renal/etiologia , Hipertensão Renal/fisiopatologia , Masculino , NG-Nitroarginina Metil Éster/toxicidade , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Ratos , Circulação Renal , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/fisiopatologia , VasoconstriçãoRESUMO
The accumulation of extracellular amyloid-ß (Aß) and intracellular hyperphosphorylated τ proteins in the brain are the hallmarks of Alzheimer's disease (AD). Much of the research into the pathogenesis of AD has focused on the amyloid or τ hypothesis. These hypotheses propose that Aß or τ aggregation is the inciting event in AD that leads to downstream neurodegeneration, inflammation, brain atrophy and cognitive impairment. Multiple drugs have been developed and are effective in preventing the accumulation and/or clearing of Aß or τ proteins. However, clinical trials examining these therapeutic agents have failed to show efficacy in preventing or slowing the progression of the disease. Thus, there is a need for fresh perspectives and the evaluation of alternative therapeutic targets in this field. Epidemiology studies have revealed significant overlap between cardiovascular and cerebrovascular risk factors such as hypertension, diabetes, atherosclerosis and stroke to the development of cognitive impairment. This strong correlation has given birth to a renewed focus on vascular contributions to AD and related dementias. However, few genes and mechanisms have been identified. 20-Hydroxyeicosatetraenoic acid (20-HETE) is a potent vasoconstrictor that plays a complex role in hypertension, autoregulation of cerebral blood flow and blood-brain barrier (BBB) integrity. Multiple human genome-wide association studies have linked mutations in the cytochrome P450 (CYP) 4A (CYP4A) genes that produce 20-HETE to hypertension and stroke. Most recently, genetic variants in the enzymes that produce 20-HETE have also been linked to AD in human population studies. This review examines the emerging role of 20-HETE in AD and related dementias.
Assuntos
Artérias Cerebrais/metabolismo , Circulação Cerebrovascular , Cognição , Disfunção Cognitiva/metabolismo , Demência Vascular/metabolismo , Ácidos Hidroxieicosatetraenoicos/metabolismo , Animais , Artérias Cerebrais/fisiopatologia , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/psicologia , Demência Vascular/epidemiologia , Demência Vascular/fisiopatologia , Demência Vascular/psicologia , Hemodinâmica , Humanos , Prognóstico , Medição de Risco , Fatores de Risco , Transdução de SinaisRESUMO
ABSTRACT: The monoterpene glycoside paeoniflorin (PF) is the principal active constituent of the traditional Chinese herbal medicines, Radix Paeoniae Alba and Radix Paeoniae Rubra, which have been used for millennia to treat cardiovascular diseases (eg, hypertension, bleeding, and atherosclerosis) and neurological ailments (eg, headaches, vertigo, dementia, and pain). Recent evidence has revealed that PF exerts inhibitory effects on inflammation, fibrosis, and apoptosis by targeting several intracellular signaling cascades. In this review, we address the current knowledge about the pharmacokinetic properties of PF and its molecular mechanisms of action. We also present results from recent preclinical studies supporting the utility of PF for the treatment of pain, cerebral ischemic injury, and neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Moreover, new evidence suggests a general protective role of PF in heart attack, diabetic kidney, and atherosclerosis. Mechanistically, PF exerts multiple anti-inflammatory actions by targeting toll-like receptor-mediated signaling in both parenchymal and immune cells (in particular, macrophages and dendritic cells). A better understanding of the molecular actions of PF may lead to the expansion of its therapeutic uses.
Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Glucosídeos/farmacologia , Monoterpenos/farmacologia , Animais , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/prevenção & controle , Humanos , Nefropatias/fisiopatologia , Nefropatias/prevenção & controle , Doenças do Sistema Nervoso/fisiopatologia , Doenças do Sistema Nervoso/prevenção & controleRESUMO
We previously reported that deficiency in 20-HETE or CYP4A impaired the myogenic response and autoregulation of cerebral blood flow (CBF) in rats. The present study demonstrated that CYP4A was coexpressed with alpha-smooth muscle actin (α-SMA) in vascular smooth muscle cells (VSMCs) and most pericytes along parenchymal arteries (PAs) isolated from SD rats. Cell contractile capabilities of cerebral VSMCs and pericytes were reduced with a 20-HETE synthesis inhibitor, HET0016, but restored with 20-HETE analog WIT003. Similarly, intact myogenic responses of the middle cerebral artery and PA of SD rats decreased with HET0016 and were rescued by WIT003. The myogenic response of the PA was abolished in SS and was restored in SS.BN5 and SS.Cyp4a1 rats. HET0016 enhanced CBF and impaired its autoregulation in the surface and deep cortex of SD rats. These results demonstrate that 20-HETE has a direct effect on cerebral mural cell contractility that may play an essential role in controlling cerebral vascular function.
Assuntos
Ácidos Hidroxieicosatetraenoicos , PericitosRESUMO
BACKGROUND: The genes and mechanisms involved in the association between diabetes or hypertension and CKD risk are unclear. Previous studies have implicated a role for γ-adducin (ADD3), a cytoskeletal protein encoded by Add3. METHODS: We investigated renal vascular function in vitro and in vivo and the susceptibility to CKD in rats with wild-type or mutated Add3 and in genetically modified rats with overexpression or knockout of ADD3. We also studied glomeruli and primary renal vascular smooth muscle cells isolated from these rats. RESULTS: This study identified a K572Q mutation in ADD3 in fawn-hooded hypertensive (FHH) rats-a mutation previously reported in Milan normotensive (MNS) rats that also develop kidney disease. Using molecular dynamic simulations, we found that this mutation destabilizes a critical ADD3-ACTIN binding site. A reduction of ADD3 expression in membrane fractions prepared from the kidney and renal vascular smooth muscle cells of FHH rats was associated with the disruption of the F-actin cytoskeleton. Compared with renal vascular smooth muscle cells from Add3 transgenic rats, those from FHH rats had elevated membrane expression of BKα and BK channel current. FHH and Add3 knockout rats exhibited impairments in the myogenic response of afferent arterioles and in renal blood flow autoregulation, which were rescued in Add3 transgenic rats. We confirmed these findings in a genetic complementation study that involved crossing FHH and MNS rats that share the ADD3 mutation. Add3 transgenic rats showed attenuation of proteinuria, glomerular injury, and kidney fibrosis with aging and mineralocorticoid-induced hypertension. CONCLUSIONS: This is the first report that a mutation in ADD3 that alters ACTIN binding causes renal vascular dysfunction and promotes the susceptibility to kidney disease.
Assuntos
Proteínas de Ligação a Calmodulina/genética , Hipertensão/complicações , Nefropatias/etiologia , Mutação/efeitos dos fármacos , Circulação Renal/genética , Animais , Modelos Animais de Doenças , Homeostase , Hipertensão/genética , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Masculino , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos TransgênicosRESUMO
Ischemic stroke is one of the most disabling diseases and a leading cause of death globally. Despite advances in medical care, the global burden of stroke continues to grow, as no effective treatments to limit or reverse ischemic injury to the brain are available. However, recent preclinical findings have revealed the potential role of transient receptor potential cation 6 (TRPC6) channels as endogenous protectors of neuronal tissue. Activating TRPC6 in various cerebral ischemia models has been found to prevent neuronal death, whereas blocking TRPC6 enhances sensitivity to ischemia. Evidence has shown that Ca2+ influx through TRPC6 activates the cAMP (adenosine 3',5'-cyclic monophosphate) response element-binding protein (CREB), an important transcription factor linked to neuronal survival. Additionally, TRPC6 activation may counter excitotoxic damage resulting from glutamate release by attenuating the activity of N-methyl-d-aspartate (NMDA) receptors of neurons by posttranslational means. Unresolved though, are the roles of TRPC6 channels in non-neuronal cells, such as astrocytes and endothelial cells. Moreover, TRPC6 channels may have detrimental effects on the blood-brain barrier, although their exact role in neurovascular coupling requires further investigation. This review discusses evidence-based cell-specific aspects of TRPC6 in the brain to assess the potential targets for ischemic stroke management.
Assuntos
AVC Isquêmico/fisiopatologia , AVC Isquêmico/terapia , Acoplamento Neurovascular , Canal de Cátion TRPC6/metabolismo , Animais , Humanos , Modelos Biológicos , Neurônios/metabolismo , Canal de Cátion TRPC6/químicaRESUMO
Recently, we reported a mutation in γ-adducin (ADD3) was associated with an impaired myogenic response of the afferent arteriole and hypertension-induced chronic kidney disease (CKD) in fawn hooded hypertensive (FHH) rats. However, the mechanisms by which altered renal blood flow (RBF) autoregulation promotes hypertension-induced renal injury remain to be determined. The present study compared the time course of changes in renal hemodynamics and the progression of CKD during the development of DOCA-salt hypertension in FHH 1BN congenic rats [wild-type (WT)] with an intact myogenic response versus FHH 1BNAdd3KO (Add3KO) rats, which have impaired myogenic response. RBF was well autoregulated in WT rats but not in Add3KO rats. Glomerular capillary pressure rose by 6 versus 14 mmHg in WT versus Add3KO rats when blood pressure increased from 100 to 150 mmHg. After 1 wk of hypertension, glomerular filtration rate increased by 38% and glomerular nephrin expression decreased by 20% in Add3KO rats. Neither were altered in WT rats. Proteinuria doubled in WT rats versus a sixfold increase in Add3KO rats. The degree of renal injury was greater in Add3KO than WT rats after 3 wk of hypertension. RBF, glomerular filtration rate, and glomerular capillary pressure were lower by 20%, 28%, and 19% in Add3KO rats than in WT rats, which was associated with glomerular matrix expansion and loss of capillary filtration area. The results indicated that impaired RBF autoregulation and eutrophic remodeling of preglomerular arterioles increase the transmission of pressure to glomeruli, which induces podocyte loss and accelerates the progression of CKD in hypertensive Add3KO rats.
Assuntos
Pressão Sanguínea , Taxa de Filtração Glomerular , Hipertensão/complicações , Glomérulos Renais/irrigação sanguínea , Proteinúria/etiologia , Circulação Renal , Insuficiência Renal Crônica/etiologia , Animais , Arteríolas/metabolismo , Arteríolas/fisiopatologia , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Acetato de Desoxicorticosterona , Modelos Animais de Doenças , Progressão da Doença , Homeostase , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Desenvolvimento Muscular , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Proteinúria/genética , Proteinúria/metabolismo , Proteinúria/fisiopatologia , Ratos Transgênicos , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/fisiopatologia , Cloreto de Sódio na Dieta , Remodelação VascularRESUMO
Epidemiological studies demonstrate that there are sex differences in the incidence, prevalence, and outcomes of cerebrovascular disease (CVD). The present study compared the structure and composition of the middle cerebral artery (MCA), neurovascular coupling, and cerebrovascular function and cognition in young Sprague-Dawley (SD) rats. Wall thickness and the inner diameter of the MCA were smaller in females than males. Female MCA exhibited less vascular smooth muscle cells (VSMCs), diminished contractile capability, and more collagen in the media, and a thicker internal elastic lamina with fewer fenestrae compared with males. Female MCA had elevated myogenic tone, lower distensibility, and higher wall stress. The stress/strain curves shifted to the left in female vessels compared with males. The MCA of females failed to constrict compared with a decrease of 15.5 ± 1.9% in males when perfusion pressure was increased from 40 to 180 mmHg. Cerebral blood flow (CBF) rose by 57.4 ± 4.4 and 30.1 ± 3.1% in females and males, respectively, when perfusion pressure increased from 100 to 180 mmHg. The removal of endothelia did not alter the myogenic response in both sexes. Functional hyperemia responses to whisker-barrel stimulation and cognition examined with an eight-arm water maze were similar in both sexes. These results demonstrate that there are intrinsic structural differences in the MCA between sexes, which are associated with diminished myogenic response and CBF autoregulation in females. The structural differences do not alter neurovascular coupling and cognition at a young age; however, they might play a role in the development of CVD after menopause.NEW & NOTEWORTHY Using perfusion fixation of the middle cerebral artery (MCA) in calcium-free solution at physiological pressure and systematically randomly sampling the sections prepared from the same M2 segments of MCA, we found that there are structural differences that are associated with altered cerebral blood flow (CBF) autoregulation but not neurovascular coupling and cognition in young, healthy Sprague-Dawley (SD) rats. Understanding the intrinsic differences in cerebrovascular structure and function in males and females is essential to develop new pharmaceutical treatments for cerebrovascular disease (CVD).
Assuntos
Artéria Cerebral Média/fisiologia , Músculo Liso Vascular/fisiologia , Caracteres Sexuais , Vasoconstrição , Animais , Encéfalo/irrigação sanguínea , Encéfalo/fisiologia , Células Cultivadas , Cognição , Feminino , Masculino , Artéria Cerebral Média/citologia , Tono Muscular , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/fisiologia , Ratos , Ratos Sprague-DawleyRESUMO
Prolyl hydroxylase (PHD) inhibitors are being developed as alternatives to recombinant human erythropoietin (rHuEPO) for the treatment of anemia in patients with chronic kidney disease (CKD). However, the effects of PHD inhibitors and rHuEPO on blood pressure and CKD in animal models susceptible to hypertension and nephropathy have not been studied. The present study compared the effects of dimethyloxaloylglycine (DMOG), a PHD inhibitor, and rHuEPO on the development of hypertension and renal injury in Dahl salt-sensitive rats fed an 8% salt diet for 3 weeks. DMOG and rHuEPO were equally effective at raising hemoglobin levels. Systolic blood pressure rose to a greater extent in rHuEPO-treated rats (267 ± 10 vs. 226 ± 4 mm Hg) than in rats given DMOG (189 ± 8 mm Hg). Urinary protein excretion increased to 568 ± 54 versus 353 ± 25 mg/day in rats treated with rHuEPO and vehicle; however, it only rose to 207 ± 21 mg/day in rats receiving DMOG. DMOG significantly attenuated the degree of glomerulosclerosis and renal interstitial fibrosis as compared with that in vehicle and rHuEPO-treated rats. This was associated with lower renal levels of monocyte chemoattractant protein-1 and interleukin-1ß and increased vascular endothelial growth factor expression in cortex and medulla. These results indicate that DMOG and rHuEPO are equally effective in increasing hemoglobin levels in Dahl S rats; however, rHuEPO aggravates hypertension and renal injury, whereas DMOG has marked renoprotective effects. These results suggest that PHD inhibitors may have a therapeutic advantage for the treatment of anemia in CKD. SIGNIFICANCE STATEMENT: Prolyl hydroxylase (PHD) inhibitors are in phase 3 clinical trials as alternatives to recombinant human erythropoietin (rHuEPO) for the treatment of anemia in chronic kidney disease (CKD). The present study reveals that dimethyloxaloylglycine (DMOG), a PHD inhibitor, and rHuEPO are equally effective in increasing hemoglobin levels in Dahl S rats; however, rHuEPO aggravated hypertension and renal injury, whereas DMOG attenuated the development of hypertension and prevented renal injury. PHD inhibitors may provide a safer therapeutic option for the treatment of anemia in CKD.
Assuntos
Aminoácidos Dicarboxílicos/farmacologia , Anemia/tratamento farmacológico , Eritropoetina/metabolismo , Inibidores de Prolil-Hidrolase/farmacologia , Insuficiência Renal Crônica/tratamento farmacológico , Animais , Pressão Sanguínea/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fibrose/metabolismo , Hemoglobinas/efeitos dos fármacos , Hipertensão/metabolismo , Rim/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Prolil Hidroxilases/metabolismo , Ratos , Ratos Endogâmicos Dahl , Proteínas Recombinantes/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Proliferative diabetic retinopathy is a potentially blinding sequela of uncontrolled diabetes that involves a complex interaction of pro-angiogenic and inflammatory pathways. In this study, we compared the levels of pro-angiogenic arachidonic acid-derived mediators in human vitreous humor obtained from eyes with high-risk proliferative diabetic retinopathy versus controls. The results indicated that lipoxygenase and cytochrome P450-derived eicosanoids were elevated (5-HETE, 12-HETE, 20-HETE, and 20-COOH-AA), and there appeared to be no differences in levels measured in eyes with tractional retinal detachments versus those without. These results provide further insight into the pathogenesis of this disease and for the development of future potential therapeutic agents that target arachidonic acid metabolites to treat diabetic retinopathy.
Assuntos
Retinopatia Diabética/metabolismo , Eicosanoides/metabolismo , Corpo Vítreo/metabolismo , Corpo Vítreo/patologia , Biomarcadores , Cromatografia Líquida , Retinopatia Diabética/etiologia , Retinopatia Diabética/patologia , Suscetibilidade a Doenças , Feminino , Humanos , Masculino , Descolamento Retiniano/etiologia , Descolamento Retiniano/metabolismo , Descolamento Retiniano/patologia , Espectrometria de Massas em TandemRESUMO
Dual-specificity protein phosphatase 5 (DUSP5) is a member of the tyrosine-threonine phosphatase family with the ability to dephosphorylate and inactivate extracellular signal-related kinase (ERK). The present study investigates whether knockout (KO) of Dusp5 improves renal hemodynamics and protects against hypertension-induced renal injury. The renal expression of DUSP5 was reduced, and the levels of phosphorylated (p) ERK1/2 and p-protein kinase C (PKC) α were elevated in the KO rats. KO of Dusp5 enhanced the myogenic tone of the renal afferent arteriole and interlobular artery in vitro with or without induction of deoxycorticosterone acetate-salt hypertension. Inhibition of ERK1/2 and PKC diminished the myogenic response to a greater extent in Dusp5 KO rats. Autoregulation of renal blood flow was significantly impaired in hypertensive wild-type (WT) rats but remained intact in Dusp5 KO animals. Proteinuria was markedly decreased in hypertensive KO versus WT rats. The degree of glomerular injury was reduced, and the expression of nephrin in the glomerulus was higher in hypertensive Dusp5 KO rats. Renal fibrosis and medullary protein cast formation were attenuated in hypertensive Dusp5 KO rats in association with decreased expression of monocyte chemoattractant protein 1, transforming growth factor-ß1, matrix metalloproteinase (MMP) 2, and MMP9. These results indicate that KO of Dusp5 protects against hypertension-induced renal injury, at least in part, by maintaining the myogenic tone of the renal vasculature and extending the range of renal blood flow autoregulation to higher pressures, which diminish glomerular injury, protein cast formation, macrophage infiltration, and epithelial-mesenchymal transformation in the kidney. SIGNIFICANCE STATEMENT: Dual-specificity protein phosphatase 5 (DUSP5) is a tyrosine-threonine phosphatase that inactivates extracellular signal-related kinase (ERK). We previously reported that knockout (KO) of Dusp5 enhanced the myogenic response and autoregulation in the cerebral circulation. The present study investigates whether KO of DUSP5 improves renal hemodynamics and protects against hypertension-induced renal injury. Downregulation of DUSP5 enhanced the myogenic tone of renal arteriole and artery and autoregulation of renal blood flow in association with reduced proteinuria, glomerular injury, and interstitial fibrosis after the induction of hypertension. Inhibition of ERK1/2 and protein kinase C diminished the myogenic response to a greater extent in Dusp5 KO rats. These results suggest that DUSP5 might be a viable drug target for the treatment of hypertension nephropathy.
Assuntos
Fosfatases de Especificidade Dupla/deficiência , Fosfatases de Especificidade Dupla/genética , Técnicas de Inativação de Genes , Hipertensão Renal/genética , Nefrite/genética , Animais , Quimiocina CCL2/metabolismo , Regulação para Baixo/genética , Transição Epitelial-Mesenquimal/genética , Fibrose , Regulação Enzimológica da Expressão Gênica/genética , Hemodinâmica/genética , Hipertensão Renal/metabolismo , Hipertensão Renal/patologia , Hipertensão Renal/fisiopatologia , Glomérulos Renais/irrigação sanguínea , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Masculino , Metaloproteinases da Matriz/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Desenvolvimento Muscular/genética , Nefrite/metabolismo , Nefrite/patologia , Nefrite/fisiopatologia , Proteína Quinase C/metabolismo , Ratos , Fluxo Sanguíneo Regional/genética , Fator de Crescimento Transformador beta/metabolismoRESUMO
Hypertension is the most common modifiable risk factor for stroke, and understanding the underlying mechanisms of hypertension and hypertension-related stroke is crucial. 20-hydroxy-5, 8, 11, 14-eicosatetraenoic acid (20-HETE), which plays an important role in vasoconstriction, autoregulation, endothelial dysfunction, angiogenesis, inflammation, and blood-brain barrier integrity, has been linked to hypertension and stroke. 20-HETE can promote hypertension by potentiating the vascular response to vasoconstrictors; it also can reduce blood pressure by inhibition of sodium transport in the kidney. The production of 20-HETE is elevated after the onset of both ischemic and hemorrhagic strokes; on the other hand, subjects with genetic variants in CYP4F2 and CYP4A11 that reduce 20-HETE production are more susceptible to stroke. This review summarizes recent genetic variants in CYP4F2, and CYP4A11 influencing 20-HETE production and discusses the role of 20-HETE in hypertension and the susceptibility to the onset, progression, and prognosis of ischemic and hemorrhagic strokes.
Assuntos
Ácidos Hidroxieicosatetraenoicos/metabolismo , Hipertensão/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Progressão da Doença , Humanos , Modelos Biológicos , Polimorfismo GenéticoRESUMO
Chronic kidney disease (CKD), defined as reduced glomerular filtration rate, is increasingly becoming a major public health issue. At the histological level, renal fibrosis is the final common pathway leading to end-stage renal disease, irrespective of the initial injury. According to this view, antifibrotic agents should slow or halt the progression of CKD. However, due to multiple overlapping pathways stimulating fibrosis, it has been difficult to develop antifibrotic drugs that delay or reverse the progression of CKD. MicroRNAs (miRNAs) are small noncoding RNA molecules, 18-22 nucleotides in length, that control many developmental and cellular processes as posttranscriptional regulators of gene expression. Emerging evidence suggests that miRNAs targeted against genes involved in renal fibrosis might be potential candidates for the development of antifibrotic therapies for CKD. This review will discuss some of the miRNAs, such as Let-7, miR-21,-29, -192, -200,-324, -132, -212, -30, -126, -433, -214, and -199a, that are implicated in renal fibrosis and the potential to exploit these molecular targets for the treatment of CKD.