Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Sensors (Basel) ; 24(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38894076

RESUMO

The exponential increase in the production and transportation of petroleum-derived products observed in recent years has been driven by the escalating demand for energy, textiles, plastic-based materials, and other goods derived from petroleum. Consequently, there has been a corresponding rise in spills of these petroleum derivatives, particularly in water sources utilized for transportation or, occasionally, illegally utilized for tank cleaning or industrial equipment maintenance. Numerous researchers have proposed highly effective techniques for detecting these products, aiming to facilitate their cleanup or containment and thereby minimize environmental pollution. However, many of these techniques rely on the identification of individual compounds, which presents significant drawbacks, including complexity of handling, subjectivity, lengthy analysis times, infeasibility for in situ analysis, and high costs. In response, there has been a notable surge in the utilization of sensors or generalized profiling techniques serving as sensors to generate characteristic fingerprints of these products, thereby circumventing the aforementioned disadvantages. This review comprehensively examines the evolution of techniques employed for detecting petroleum-derived products in water samples, along with their associated advantages and disadvantages. Furthermore, the review examines current perspectives on methods for the removal and/or containment of these products from water sources, to minimize their environmental impact and the associated health repercussions on living organisms and ecosystems.

2.
Biomacromolecules ; 24(7): 3094-3104, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37288956

RESUMO

The high potential use of lignin in novel biomaterials and chemicals represents an important opportunity for the valorization of the most abundant natural resource of aromatic molecules. From an environmental perspective, it is highly desirable replacing the hazardous methods currently used to extract lignin from lignocellulosic biomass and develop more sustainable and environmentally friendly approaches. Therefore, in this work, levulinic acid (a "green" solvent obtained from biomass) was successfully used, for the first time, to selectively extract high-quality lignin from pine wood sawdust residues at 200 °C for 6 h (at atmospheric pressure). Moreover, the addition of catalytic concentrations of inorganic acids (i.e., H2SO4 or HCl) was found to substantially reduce the temperature and reaction times needed (i.e., 140 °C, 2 h) for complete lignin extraction without compromising its purity. NMR data suggests that condensed OH structures and acidic groups are present in the lignin following extraction. Levulinic acid can be easily recycled and efficiently reused several times without affecting its performance. Furthermore, excellent solvent reusability and performance of extraction of other wood residues has been successfully demonstrated, thus making the developed levulinic acid-based procedure highly appealing and promising to replace the traditional less sustainable methodologies.


Assuntos
Ácidos , Lignina , Lignina/química , Solventes/química , Ácidos Levulínicos , Biomassa
3.
Molecules ; 27(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35566176

RESUMO

Resole resins have many applications, especially for foam production. However, the use of phenol, a key ingredient in resoles, has serious environmental and economic disadvantages. In this work, lignin extracted from pine wood using a "green" solvent, levulinic acid, was used to partially replace the non-sustainable phenol. The physicochemical properties of this novel resin were compared with resins composed of different types of commercial lignins. All resins were optimized to keep their free formaldehyde content below 1 wt%, by carefully adjusting the pH of the mixture. Substitution of phenol with lignin generally increases the viscosity of the resins, which is further increased with the lignin mass fraction. The addition of lignin decreases the kinetics of gelification of the resin. The type and amount of lignin also affect the thermal stability of the resins. It was possible to obtain resins with higher thermal stability than the standard phenol-formaldehyde resins without lignin. This work provides new insights regarding the development of lignin-based resoles as a very promising sustainable alternative to petrol-based resins.


Assuntos
Lignina , Pinus , Formaldeído/química , Ácidos Levulínicos , Lignina/química , Fenol/química , Fenóis/química , Polímeros , Solventes , Madeira
4.
Phytother Res ; 35(3): 1248-1283, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33025610

RESUMO

Cactus species are plants that grow in the arid and semiarid regions of the world. They have long fascinated the attention of the scientific community due to their unusual biology. Cactus species are used for a variety of purposes, such as food, fodder, ornamental, and as medicinal plants. In the last regard, they have been used in traditional medicine for eras by the ancient people to cure several diseases. Recent scientific investigations suggest that cactus materials may be used as a source of naturally-occurring products, such as mucilage, fiber, pigments, and antioxidants. For this reason, numerous species under this family are becoming endangered and extinct. This review provides an overview of the habitat, classification, phytochemistry, chemical constituents, extraction and isolation of bioactive compounds, nutritional and pharmacological potential with pre-clinical and clinical studies of different Cactus species. Furthermore, conservation strategies for the ornamental and endangered species have also been discussed.


Assuntos
Cactaceae/química , Compostos Fitoquímicos/uso terapêutico , Fitoterapia/métodos , Extratos Vegetais/química , Plantas Medicinais/efeitos dos fármacos , Animais , Humanos , Compostos Fitoquímicos/farmacologia
5.
Molecules ; 26(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34770836

RESUMO

Nanoparticles (NPs) recently emerged as new chemical elicitors acting as signaling agents affecting several processes in plant metabolism. The aim of this work was to investigate the impact of the addition of copper oxide (CuO), zinc oxide (ZnO) and iron oxide (Fe3O4) NPs (<100 nm) at different concentrations (1, 5 and 10 mg/L) to the culture media on several morphological, physiological and -biochemical parameters of in vitro shoot cultures of Lavandula viridis L'Hér and Thymus lotocephalus G. López and R. Morales (Lamiaceae), as well as on phenolic profile and bioactivity (antioxidant and enzyme inhibition capacities). Although some decreases in shoot number and length were observed in response to NPs, biomass production was not affected or was improved in both species. Most NPs treatments decreased total chlorophyll and carotenoid contents and increased malondialdehyde levels, an indicator of lipid peroxidation, in both species. HPLC-HR-MS analysis led to the identification of thirteen and twelve phenolic compounds, respectively, in L. viridis and T. lotocephalus extracts, being rosmarinic acid the major compound found in all the extracts. ZnO and Fe3O4 NPs induced an increase in total phenolic and rosmarinic acid contents in T. lotocephalus extracts. Additionally, some NPs treatments also increased antioxidant activity in extracts from this species and the opposite was observed for L. viridis. The capacity of the extracts to inhibit tyrosinase, acetylcholinesterase and butyrylcholinesterase enzymes was not considerably affected. Overall, NPs had a significant impact on different parameters of L. viridis and T. lotocephalus in vitro shoot cultures, although the results varied with the species and NPs type.


Assuntos
Lamiaceae/química , Nanopartículas Metálicas , Fenóis/química , Fenóis/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Cromatografia Líquida de Alta Pressão , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Espectrometria de Massas , Região do Mediterrâneo , Análise de Componente Principal , Técnicas de Cultura de Tecidos
6.
Molecules ; 26(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34684717

RESUMO

In this study, natural deep eutectic solvents (NADES) formed by choline chloride (ChCl), sucrose, fructose, glucose, and xylose, were used to extract antioxidants from the halophyte Polygonum maritimum L. (sea knotgrass) and compared with conventional solvents (ethanol and acetone). NADES and conventional extracts were made by an ultrasound-assisted procedure and evaluated for in vitro antioxidant properties by the radical scavenging activity (RSA) on the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, oxygen radical absorbance capacity (ORAC), and copper chelating activity (CCA). Samples were profiled by liquid chromatography (LC)-electrospray ionization (ESI)-QTOF-MS analysis. ChCl:fructose was more efficient in the DPPH assay, than the acetone extract. ChCl:sucrose and ChCl:fructose extracts had the highest ORAC when compared with the acetone extract. NADES extracts had higher CCA, than the acetone extract. The phenolic composition of the NADES extracts was less complex than the conventional extracts, but the proportions of major antioxidants, such as flavonols and flavan-3-ols, were similar in all the solvents. Myricitrin was the major flavonoid in all of the samples, while gallic acid was the main phenolic acid in the conventional extracts and present in a greater amount in ChCl:fructose. Results suggest that NADES containing ChCl and sucrose/fructose can replace conventional solvents, especially acetone, in the extraction of antioxidants from sea knotgrass.


Assuntos
Antioxidantes/isolamento & purificação , Fallopia multiflora/química , Solventes/química , Antioxidantes/química , Etanol , Fallopia multiflora/metabolismo , Flavonoides/isolamento & purificação , Fenóis/química , Extratos Vegetais/química , Polygonum/química , Polifenóis/química
7.
J Sci Food Agric ; 101(10): 4076-4089, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33349925

RESUMO

BACKGROUND: Mentha pulegium is an aromatic and medicinal plant used in different Mediterranean herb-based liqueurs, whose phytochemical composition depends on the elaboration technique used. The aim of this work was to investigate differences in the sensory, chemical, and biological characteristics of pennyroyal liqueurs elaborated by hydro-alcoholic (HI) and aqueous (AI) infusions, percolation (P), maceration (M), and distillation (D) techniques, and by the mixture of spirit with pennyroyal essential oil (EO). The volatile composition determined by gas chromatography-mass spectrometry (GC-MS) and gas chromatography coupled to flame ionization detection (GC-FID), the total phenolic (TPC) and flavonoid (TFC) contents, the antioxidant (AC), and enzyme (α-glucosidase, tyrosinase, and acetylcholinesterase) inhibitory capacities, and the sensory analysis by napping, were evaluated in the liqueurs obtained. RESULTS: Monoterpenes and sesquiterpenes were the main volatiles present in liqueurs. The M, P, HI, and AI liqueurs showed the highest TPC, TFC, and AC values; and pulegone, the main hepatotoxic chemotype, was found in concentrations that gave rise to concern. The D and EO liqueurs stand out for their acceptable pulegone content and greater tyrosinase inhibition. Similar liqueur classifications were achieved by sensory analyses, and physico-chemical and biological analyses using multiple factor and principal component analyses, respectively. CONCLUSION: These results are an important contribution to the identification of the most appropriate elaboration conditions for herbal liqueurs with the healthiest chemical composition and functional properties. © 2020 Society of Chemical Industry.


Assuntos
Bebidas Alcoólicas/análise , Mentha pulegium/química , Antioxidantes/química , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Fenóis/química , Compostos Fitoquímicos/química , Paladar
8.
Molecules ; 25(17)2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32872594

RESUMO

Plastics are widely used due to their excellent properties, inexpensiveness and versatility leading to an exponential consumption growth during the last decades. However, most plastic does not biodegrade in any meaningful sense; it can exist for hundreds of years. Only a small percentage of plastic waste is recycled, the rest being dumped in landfills, incinerated or simply not collected. Waste-water treatment plants can only minimize the problem by trapping plastic particles of larger size and some smaller ones remain within oxidation ponds or sewage sludge, but a large amount of microplastics still contaminate water streams and marine systems. Thus, it is clear that in order to tackle this potential ecological disaster, new strategies are necessary. This review aims at briefly introducing the microplastics threat and critically discusses emerging technologies, which are capable to efficiently clean aqueous media. Special focus is given to novel greener approaches based on lignocellulose flocculants and other biomaterials. In the final part of the present review, it was given a proof of concept, using a bioflocculant to remove micronized plastic from aqueous medium. The obtained results demonstrate the huge potential of these biopolymers to clean waters from the microplastics threat, using flocculants with appropriate structure.


Assuntos
Biodegradação Ambiental , Monitoramento Ambiental , Microplásticos/efeitos adversos , Esgotos/química , Poluentes Químicos da Água , Ecossistema , Reciclagem , Poluentes Químicos da Água/efeitos adversos , Poluentes Químicos da Água/química
9.
Biomacromolecules ; 20(11): 4107-4116, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31573794

RESUMO

Bombyx mori L. silk fibroin (SF) is widely used in different areas due to its ability to form durable and resilient materials with notable mechanical properties. However, in some of these applications the dissolution of SF is required, and this is not often straightforward due to its inability to be dissolved in the majority of common solvents. This work reports a novel approach to dissolve SF using 40 wt % aqueous tetrabutylammonium hydroxide, TBAOH(aq), at mild temperature. A thorough rheological study combined with small-angle X-ray scattering is presented to correlate the SF state in solution with changes in the rheological parameters. The scattering data suggest that the SF conformation in TBAOH(aq) is close to a random coil, possibly having some compact domains linked with flexible random chains. The radius of gyration (Rg) and the molecular weight (Mw) were estimated to be ca. 17.5 nm and 450 kDa, respectively, which are in good agreement with previous works. Nevertheless, a lower Mw value was deduced from rheometry (i.e., 321 kDa) demonstrating a low degree of depolymerization during dissolution in comparison to other harsh processes. The transition from a dilute to a semidilute regime coincides with the estimated critical concentration and is marked by the presence of a shear-thinning behavior in the flow curves, violation of the empirical Cox-Merz rule, and an upward increase in the activation energy. This work paves the way toward the development of advanced high-tech SF-based materials.


Assuntos
Fibroínas/química , Compostos de Amônio Quaternário/química , Soluções , Solventes/química , Animais , Bombyx/química , Conformação Molecular , Reologia , Solubilidade , Soluções/química , Temperatura , Água/química
10.
J Sci Food Agric ; 99(6): 2697-2707, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30350333

RESUMO

BACKGROUND: The production of the traditional carob liquor from Algarve (Portugal) depends on numerous factors such as carob processing, variety and maceration conditions. An experimental design with 36 runs was created to evaluate the effect of the roasting temperature, particle size, variety of carob and time of maceration on several parameters of carob liquors as gallic acid and total phenolic content, the furanic composition (furfural and 5-(hydroxymethyl)furfural), browning index and in vitro antioxidant capacity. RESULTS: The results revealed that carob variety was the independent variable with the greatest effect on antioxidant capacity, total phenolic and gallic acid content. In particular, AIDA liquors presented the highest results, mainly those prepared with unroasted carob. Meanwhile, Galhosa and Mulata liquors showed the greatest concentrations when the carob pulp was roasted at 150 °C. The furanic composition and browning index were greatly influenced by the carob roasting degree. CONCLUSION: The levels of the main toxic furanics present in carob liquors, furfural and 5-(hydroxymethyl)furfural, suggest a safe consumption of these beverages even in samples of carobs with the maximum roasting degree. The smallest carob particle size favoured the highest phenolic extraction, while the longest maceration periods decreased the concentration of the toxic furanic compounds studied. © 2018 Society of Chemical Industry.


Assuntos
Antioxidantes/química , Fabaceae/química , Manipulação de Alimentos , Frutas/química , Furanos/química , Fenóis/química , Temperatura Alta , Fatores de Tempo
11.
J Food Sci Technol ; 54(1): 219-227, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28242919

RESUMO

The antioxidant and enzyme inhibitory properties of methanolic extracts from four aromatic plants used in traditional medicine and food [Calamintha nepeta (L.) Savi subsp. nepeta, Helichrysum italicum subsp. picardii Franco, Mentha spicata L. and Origanum vulgare subsp. virens (Hoffmanns. & Link) Bonnier & Layens] were evaluated. The extract from O. vulgare exhibited the strongest DPPH (IC50 of 4.65 ± 0.12 µg/ml) and ABTS (1479.56 ± 12.29 µmolTE/gextract) scavenging capacities, as well as the largest ferric reducing ability (1746.76 ± 45.11 µmolAAE/gextract). This extract also showed the highest total phenolic content (1597.20 ± 24.10 µmolGAE/gextract) and although HPLC-DAD analysis revealed rosmarinic acid as the main compound of the extract, other compounds seem to be involved in the antioxidant activity. Furthermore, the extract from H. italicum, which was found to be rich in caffeoylquinic and dicaffeoylquinic acids and in pinocembrin, showed the highest inhibitory potential against acetylcholinesterase, tyrosinase and α-glucosidase. Overall, the results obtained validate the usefulness of the studied plants as valuable sources of natural agents beneficial for human health.

12.
Biometals ; 28(6): 997-1007, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26433896

RESUMO

Little is known about how tolerant plants cope with internalized aluminium (Al). Tolerant plants are known to deploy efficient detoxification mechanisms, however it is not known to what extent the primary and secondary metabolism is affected by Al. The aim of this work was to study the metabolic repercussions of Al stress in the tolerant plant Plantago almogravensis. P. almogravensis is well adapted to acid soils where high concentrations of free Al are found and has been classified as a hyperaccumulator. In vitro reared plantlets were used for this purpose in order to control Al exposure rigorously. The metabolome of P. almogravensis plantlets as well as its metabolic response to the supply of sucrose was characterized. The supply of sucrose leads to an accumulation of amino acids and secondary metabolites and consumption of carbohydrates that result from increased metabolic activity. In Al-treated plantlets the synthesis of amino acids and secondary metabolites is transiently impaired, suggesting that P. almogravensis is able to recover from the Al treatment within the duration of the trials. In the presence of Al the consumption of carbohydrate resources is accelerated. The content of some metabolic stress markers also demonstrates that P. almogravensis is highly adapted to Al stress.


Assuntos
Adaptação Fisiológica , Compostos de Alumínio/farmacologia , Cloretos/farmacologia , Metaboloma/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Plantago/efeitos dos fármacos , Cloreto de Alumínio , Aminoácidos/metabolismo , Transporte Biológico , Metaboloma/fisiologia , Raízes de Plantas/metabolismo , Plantago/metabolismo , Análise de Componente Principal , Solo/química , Estresse Fisiológico , Sacarose/farmacologia , Técnicas de Cultura de Tecidos
13.
Cryo Letters ; 35(6): 521-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25583013

RESUMO

BACKGROUND: Plantago algarbiensis is an endangered endemic species from the Algarve, Portugal. OBJECTIVE: The main goal of this study was to investigate the viability of cryopreservation procedures in the conservation of seeds and nodal explants from this species. MATERIALS AND METHODS: Seeds were directly immersed in liquid nitrogen (LN) for 30 days. Two methods were tested for the cryopreservation of nodal explants, namely droplet-vitrification and encapsulation-dehydration. For both methods, nodal segments were precultured on Murashige and Skoog (MS) medium and recovered on MS supplemented with 0.2 mg l(-1) 6-benzyladenine (BA), after freezing. RESULTS: After 30 days in LN, the germination capacity of seeds was not affected. The regrowth percentages of cryopreserved nodal segments were approximately 60%. With the droplet-vitrification method, a regrowth percentage of 60.0+/-15.2% was obtained after 120 min exposure to PVS2 (plant vitrification solution 2) and with encapsulation-dehydration method the highest percentage, 63.3+/-9.6%, was achieved after 3 h desiccation. CONCLUSION: Seed cryopreservation and cryopreservation of nodal segments by droplet-vitrification and encapsulation-dehydration are therefore effective approaches for the conservation of P. algarbiensis.


Assuntos
Criopreservação/métodos , Plantago/fisiologia , Vitrificação , Compostos de Benzil , Crioprotetores/metabolismo , Dessecação/métodos , Germinação , Cinetina/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Plantago/crescimento & desenvolvimento , Purinas , Sementes/crescimento & desenvolvimento , Sementes/fisiologia
14.
Cryo Letters ; 35(2): 119-28, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24869644

RESUMO

BACKGROUND: Thymus lotocephalus is a rare endemic species from the Algarve, Portugal, and is legally protected by Portuguese and European legislation. OBJECTIVE: The aim is to develop a cryopreservation protocol for T. lotocephalus shoot tips, as an alternative approach for the long-term conservation of this species. METHODS: Several methods (droplet-vitrification, vitrification and encapsulation-dehydration) were tested. Conditions regarding the subculture period, cold-hardening and preculture were optimized. Cryopreserved shoot tips were also assessed for their genetic stability using RAPD markers. RESULTS: Droplet-vitrification presented the best results. The best regrowth of cryopreserved shoot tips obtained eight weeks after rewarming was 67%. This was accomplished with four weeks subculture period of in vitro-donor plants at 25 degree C, preculture of excised shoot tips for one day on MS medium containing 0.3 M sucrose, treatment in PVS2 for 60 min, and MS supplemented with 0.2 mg per L zeatin as recovery medium. The assessment using RAPD markers observed variation at a low frequency and shoots regenerated from cryopreserved apices showed normal development compared to the regular in vitro-grown shoots. CONCLUSION: Droplet-vitrification is thus a viable method for the cryopreservation of T. lotocephalus shoot tips.


Assuntos
Criopreservação , DNA de Plantas/genética , Genoma de Planta , Brotos de Planta/fisiologia , Thymus (Planta)/fisiologia , Vitrificação , Adaptação Fisiológica , Conservação dos Recursos Naturais , Crioprotetores/farmacologia , Meios de Cultura , Dessecação , Espécies em Perigo de Extinção , Instabilidade Genômica , Reguladores de Crescimento de Plantas/farmacologia , Brotos de Planta/efeitos dos fármacos , Portugal , Técnica de Amplificação ao Acaso de DNA Polimórfico , Sacarose/farmacologia , Thymus (Planta)/efeitos dos fármacos , Zeatina/farmacologia
15.
Plants (Basel) ; 13(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732403

RESUMO

For centuries, the carob tree (Ceratonia siliqua L.) has contributed to the economy of the Mediterranean basin, mainly as food for livestock. Nowadays, the value of the carob tree extends far beyond its traditional uses, encompassing a wide range of industries and applications that take advantage of its unique properties and nutritional benefits. Despite its high industrial demand and European indications, there has been a 65% reduction in the area cultivated throughout the Mediterranean area in the 21st century. Given the threats posed by climate change, including reduced water availability and nutrient-depleted soils, there is a growing need to focus on this crop, which is well placed to cope with unpredictable weather. In this review, we use a bibliographic search approach to emphasise the prioritisation of research needs for effective carob tree exploitation. We found enormous gaps in the scientific knowledge of this under-utilised crop species with fruit pulp and seeds of high industrial value. Insufficient understanding of the biology of the species, as well as inadequate agronomic practices, compromise the quantity and the quality of fruits available to the industry. In addition to industrial applications, carob can also be used in reforestation or restoration programmes, providing a valuable crop while promoting biodiversity conservation and soil restoration. The carbon sequestration potential of the trees should be taken into account as a promising alternative in fighting climate change. This bibliographic search has highlighted clusters with different knowledge gaps that require further research and investment. The carob tree has untapped potential for innovation, economic development, and environmental sustainability.

16.
Antioxidants (Basel) ; 13(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38397779

RESUMO

The present study aimed to evaluate the efficacy of natural deep eutectic solvents (NADESs) on the extraction of phytochemicals from eight Algerian date fruit cultivars (Phoenix dactylifera L.). In this study, lactic acid/sucrose-based NADESs were used as an alternative to conventional chemical solvents using the ultrasound-assisted extraction (UAE) method. The obtained extracts were assessed for the determination of bioactive compound contents, phenolic composition, antioxidant activity, and enzyme inhibitory potential. The results showed a considerable variation in phytochemical compositions and related activities between cultivars, where the greatest contents of total phenolics (1288.7 mg GAE/100 g), total flavonoids (53.8 mg QE/100 g), proanthocyanidins (179.5 mg CE/g), and total triterpenoids (12.88 mg OAE/100 g) were detected in the fruits of the Ourous cultivar. The same cultivar displayed the highest antioxidant capacity against DPPH• free radical (595 mg AAE/100 g), ABTS•+ cation radical (839 mg TE/100 g), and ferric reducing antioxidant potential (704 mg AAE/100 g). All extracts manifested moderate antioxidant activities tested by phosphomolybdenum, NO•, and linoleic acid lipid peroxidation assays. These extracts also exhibited interesting levels of in vitro enzyme inhibition; the Ourous cultivar gave the best inhibitory activity against α-amylase and acetylcholinesterase with 45 and 37%, respectively. HPLC-DAD-MS detected a total of five compounds, with phenolic acids and flavonoids being the main phenolics identified in the extract. The phenolic composition exhibited significant variability among cultivars. Notably, the highest amounts were revealed in the Tazizaout cultivar, with the predominance of gallic acid. The results confirmed that the combination of UAE and NADESs provides a novel and important alternative to chemical solvents for sustainable and environmentally friendly extraction and can represent a good alternative in food and pharmaceutical industry applications.

17.
Biometals ; 26(3): 427-37, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23563731

RESUMO

We evaluated the impact of low pH and aluminum (Al) on the leaves and roots of Plantago almogravensis Franco and Plantago algarbiensis Samp., focusing on energy partitioning in photosystem II, H2O2 levels, lipid peroxidation, electrolyte leakage (EL), protein oxidation, total soluble protein content and antioxidant enzyme activities. In both species, Al triggered more changes in oxidative metabolism than low pH alone, particularly in the roots. We found that Al increased the levels of H2O2 in P. algarbiensis roots, but reduced the levels of H2O2 in P. almogravensis leaves and roots. Neither low pH nor Al affected the spatial heterogeneity of chlorophyll fluorescence, the maximum photochemical efficiency of PSII (Fv/Fm), the actual quantum efficiency of PSII (ϕPSII) or the quantum yields of regulated (ϕNPQ) and nonregulated (ϕNO) energy dissipation, and there was no significant change in total soluble protein content and EL. In P. algarbiensis, Al increased the carbonyl content and the activities of superoxide dismutase (SOD) and catalase (CAT) in the roots, and also CAT, ascorbate peroxidase and guaiacol peroxidase activities in the leaves. In P. almogravensis, Al reduced the level of malondialdehyde in the roots as well as SOD activity in the leaves and roots. We found that P. almogravensis plantlets could manage the oxidative stress caused by low pH and Al, whereas the P. algarbiensis antioxidant system was unable to suppress Al toxicity completely, leading to the accumulation of H2O2 and consequential protein oxidation in the roots.


Assuntos
Alumínio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Plantago/efeitos dos fármacos , Alumínio/administração & dosagem , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Eletrólitos/metabolismo , Peróxido de Hidrogênio/análise , Concentração de Íons de Hidrogênio , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidase/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantago/crescimento & desenvolvimento , Plantago/metabolismo , Superóxido Dismutase/metabolismo
18.
Foods ; 12(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36832914

RESUMO

Today's global food system aggravates climate change while failing in meeting SDG2 and more. Yet, some sustainable food cultures, such as the Mediterranean Diet (MD), are simultaneously safe, healthy, and rooted in biodiversity. Their wide range of fruits, herbs, and vegetables convey many bioactive compounds, often associated with colour, texture, and aroma. Phenolic compounds are largely responsible for such features of MD's foods. These plant secondary metabolites all share in vitro bioactivities (e.g., antioxidants), and some are evidenced in vivo (e.g., plant sterols lower cholesterol levels in blood). The present work examines the role of polyphenols in the MD, with respect to human and planetary health. Since the commercial interest in polyphenols is increasing, a strategy for the sustainable exploitation of Mediterranean plants is essential in preserving species at risk while valuing local cultivars (e.g., through the geographical indication mechanism). Finally, the linkage of food habits with cultural landscapes, a cornerstone of the MD, should enable awareness-raising about seasonality, endemism, and other natural constraints to ensure the sustainable exploitation of Mediterranean plants.

19.
Nutrients ; 15(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37571258

RESUMO

Over the last 20 years, the use of dietary supplements (DS) has continued to grow in many countries. Due to the public health crisis brought on by the COVID-19 pandemic and amidst fears regarding COVID-19 vaccines and their low supply in many regions of the world, there has been a marked interest in the use of DS as alternative means of protecting against and treating this emerging disease, as well as boosting the immune system and minimizing the risk of inflammation. Despite a lack of evidence to suggest their efficacy, a surge in the sales of DS has been reported in many parts of the world. Questions have also been raised about the health effects associated with DS due to their increased use during the health crisis. Numerous scientific studies have demonstrated their beneficial properties as well as some adverse and even toxic effects. In addition, given the current global interest in this issue, a review is needed to establish the status of dietary supplements before and during the health crisis. The aim of this review is to summarize the current evidence on the impact of dietary supplements on the incidence of the COVID-19 pandemic, as well as their regulation and associated market trends. First, we provide an overview of DS, including a comprehensive review of the legislative and regulatory aspects of DS in the USA, China, the EU, and Algeria. Second, we describe the prevalence of the most commonly consumed DS and their efficacy as a prophylactic modality in the era of COVID-19. Additionally, we examine the structure and size of the DS market in the countries that predominantly produce and import them, its global market trend, and the impact of the COVID-19 pandemic on market growth. Finally, in this review, we also discuss the profile of DS users.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Pandemias/prevenção & controle , Suplementos Nutricionais , Inflamação
20.
Foods ; 12(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37835361

RESUMO

The fruits of Arbutus unedo L. have a crimson colour and are enriched with remarkable concentrations of bioactive compounds such as anthocyanins and polyphenols. These fruits are commonly used in the production of a Portuguese Protected Geographical Indication distillate called "Aguardente de Medronho". During this process, a solid pomace is generated and presently discarded without valuable applications. In this work, two strategies have been developed for the valorisation of A. unedo pomace. The first approach considers the extraction of polyphenols from this by-product through the optimization of an ultrasound-assisted method using a Box-Behnken design coupled with response surface methodology. The results indicate that the temperature and the percentage of methanol, along with their interaction, significantly influence the total concentration of polyphenols and the antioxidant activity of the extracts obtained. The optimal conditions identified consider the extraction of 0.5 g of sample with 20 mL of a solvent containing 74% MeOH (aq), at a pH of 4.8, maintained at 70 °C for 15 min. On the other hand, the second valorisation strategy considered the use of A. unedo pomace in the development of functional cookies. The incorporation of 15-20% pomace in the cookie formulation was well-received by consumers. This incorporation results in an intake of ca. 6.55 mg of polyphenols per gram of cookie consumed, accompanied by an antioxidant activity of 4.54 mg Trolox equivalents per gram of cookie consumed. Overall, these results encourage the employment of A. unedo pomace either as a reliable source of extracts enriched in polyphenols or as a nutraceutical active ingredient in functional cookies, thereby positively impacting human health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA