Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Digit Health ; 9: 20552076231171475, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37205164

RESUMO

Objective: The exchange of health-related data is subject to regional laws and regulations, such as the General Data Protection Regulation (GDPR) in the EU or the Health Insurance Portability and Accountability Act (HIPAA) in the United States, resulting in non-trivial challenges for researchers and educators when working with these data. In pathology, the digitization of diagnostic tissue samples inevitably generates identifying data that can consist of sensitive but also acquisition-related information stored in vendor-specific file formats. Distribution and off-clinical use of these Whole Slide Images (WSIs) are usually done in these formats, as an industry-wide standardization such as DICOM is yet only tentatively adopted and slide scanner vendors currently do not provide anonymization functionality. Methods: We developed a guideline for the proper handling of histopathological image data particularly for research and education with regard to the GDPR. In this context, we evaluated existing anonymization methods and examined proprietary format specifications to identify all sensitive information for the most common WSI formats. This work results in a software library that enables GDPR-compliant anonymization of WSIs while preserving the native formats. Results: Based on the analysis of proprietary formats, all occurrences of sensitive information were identified for file formats frequently used in clinical routine, and finally, an open-source programming library with an executable CLI tool and wrappers for different programming languages was developed. Conclusions: Our analysis showed that there is no straightforward software solution to anonymize WSIs in a GDPR-compliant way while maintaining the data format. We closed this gap with our extensible open-source library that works instantaneously and offline.

2.
Comput Methods Programs Biomed ; 215: 106596, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34968788

RESUMO

BACKGROUND AND OBJECTIVE: Artificial intelligence (AI) apps hold great potential to make pathological diagnoses more accurate and time efficient. Widespread use of AI in pathology is hampered by interface incompatibilities between pathology software. We studied the existing interfaces in order to develop the EMPAIA App Interface, an open standard for the integration of pathology AI apps. METHODS: The EMPAIA App Interface relies on widely-used web communication protocols and containerization. It consists of three parts: A standardized format to describe the semantics of an app, a mechanism to deploy and execute apps in computing environments, and a web API through which apps can exchange data with a host application. RESULTS: Five commercial AI app manufacturers successfully adapted their products to the EMPAIA App Interface and helped improve it with their feedback. Open source tools facilitate the adoption of the interface by providing reusable data access and scheduling functionality and enabling automatic validation of app compliance. CONCLUSIONS: Existing AI apps and pathology software can be adapted to the EMPAIA App Interface with little effort. It is a viable alternative to the proprietary interfaces of current software. If enough vendors join in, the EMPAIA App Interface can help to advance the use of AI in pathology.


Assuntos
Inteligência Artificial , Aplicativos Móveis , Comunicação , Retroalimentação , Semântica
3.
J Pathol Inform ; 12: 13, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012717

RESUMO

Modern image analysis techniques based on artificial intelligence (AI) have great potential to improve the quality and efficiency of diagnostic procedures in pathology and to detect novel biomarkers. Despite thousands of published research papers on applications of AI in pathology, hardly any research implementations have matured into commercial products for routine use. Bringing an AI solution for pathology to market poses significant technological, business, and regulatory challenges. In this paper, we provide a comprehensive overview and advice on how to meet these challenges. We outline how research prototypes can be turned into a product-ready state and integrated into the IT infrastructure of clinical laboratories. We also discuss business models for profitable AI solutions and reimbursement options for computer assistance in pathology. Moreover, we explain how to obtain regulatory approval so that AI solutions can be launched as in vitro diagnostic medical devices. Thus, this paper offers computer scientists, software companies, and pathologists a road map for transforming prototypes of AI solutions into commercial products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA