Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Dent Res ; 96(2): 137-144, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28106505

RESUMO

The pulp is a highly vascularized tissue situated in an inextensible environment surrounded by rigid dentin walls, with the apical foramina being the only access. The pulp vascular system is not only responsible for nutrient supply and waste removal but also contributes actively to the pulp inflammatory response and subsequent regeneration. This review discusses the underlying mechanisms of pulp vascularization during tooth development, regeneration, and therapeutic procedures, such as tissue engineering and tooth transplantation. Whereas the pulp vascular system is established by vasculogenesis during embryonic development, sprouting angiogenesis is the predominant process during regeneration and therapeutic processes. Hypoxia can be considered a common driving force. Dental pulp cells under hypoxic stress release proangiogenic factors, with vascular endothelial growth factor being one of the most potent. The benefit of exogenous vascular endothelial growth factor application in tissue engineering has been well demonstrated. Interestingly, dental pulp stem cells have an important role in pulp revascularization. Indeed, recent studies show that dental pulp stem cell secretome possesses angiogenic potential that actively contributes to the angiogenic process by guiding endothelial cells and even by differentiating themselves into the endothelial lineage. Although considerable insight has been obtained in the processes underlying pulp vascularization, many questions remain relating to the signaling pathways, timing, and influence of various stress conditions.


Assuntos
Polpa Dentária/crescimento & desenvolvimento , Dente/crescimento & desenvolvimento , Animais , Regeneração Óssea/fisiologia , Polpa Dentária/irrigação sanguínea , Humanos , Neovascularização Fisiológica/fisiologia , Engenharia Tecidual/métodos , Dente/irrigação sanguínea
2.
J Dent Res ; 94(12): 1765-72, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26464397

RESUMO

Complement system activation has been shown to be involved in inflammation and regeneration processes that can be observed within the dental pulp after moderate carious decay. Studies simulating carious injuries in vitro have shown that when human pulp fibroblasts are stimulated by lipoteichoic acid (LTA), they synthetize all complement components. Complement activation leads to the formation of the membrane attack complex (MAC), which is known for its bacterial lytic effect. This work was designed to find out whether human pulp fibroblasts can kill Streptococcus mutans and Streptococcus sanguinis via complement activation. First, histological staining of carious tooth sections showed that the presence of S. mutans correlated with an intense MAC staining. Next, to simulate bacterial infection in vitro, human pulp fibroblasts were incubated in serum-free medium with LTA. Quantification by an enzymatic assay showed a significant increase of MAC formation on bacteria grown in this LTA-conditioned medium. To determine whether the MAC produced by pulp fibroblasts was functional, bacteria sensitivity to LTA-conditioned medium was evaluated using agar well diffusion assay and succinyl dehydrogenase (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide [MTT]) assay. Both assays showed that S. mutans and S. sanguinis were sensitive to LTA-conditioned medium. Finally, to evaluate whether MAC formation on cariogenic bacteria, by pulp fibroblasts, can be directly induced by the presence of these bacteria, a specific coculture model of human pulp fibroblasts and bacteria was developed. Immunofluorescence revealed an intense MAC labeling on bacteria after direct contact with pulp fibroblasts. The observed MAC formation and its lethal effects were significantly reduced when CD59, an inhibitor of MAC formation, was added. Our findings demonstrate that the MAC produced by LTA-stimulated pulp fibroblasts is functional and can kill S. mutans and S. sanguinis. Taken together, these data clearly highlight the function of pulp fibroblasts in destroying cariogenic bacteria.


Assuntos
Ativação do Complemento/fisiologia , Cárie Dentária/microbiologia , Polpa Dentária/citologia , Fibroblastos/fisiologia , Células Cultivadas , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Complexo de Ataque à Membrana do Sistema Complemento/fisiologia , Polpa Dentária/fisiologia , Fibroblastos/imunologia , Imunofluorescência , Humanos , Streptococcus mutans/imunologia , Streptococcus sanguis/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA