Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biophys J ; 122(18): 3690-3703, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37254483

RESUMO

Fetal lung fibroblasts contribute dynamic infrastructure for the developing lung. These cells undergo dynamic mechanical transitions, including cyclic stretch and spreading, which are integral to lung growth in utero. We investigated the role of the nuclear envelope protein emerin in cellular responses to these dynamic mechanical transitions. In contrast to control cells, which briskly realigned their nuclei, actin cytoskeleton, and extracellular matrices in response to cyclic stretch, fibroblasts that were acutely downregulated for emerin showed incomplete reorientation of both nuclei and actin cytoskeleton. Emerin-downregulated fibroblasts were also aberrantly circular in contrast to the spindle-shaped controls and exhibited an altered pattern of filamentous actin organization that was disconnected from the nucleus. Emerin knockdown was also associated with reduced myosin light chain phosphorylation during cell spreading. Interestingly, emerin-downregulated fibroblasts also demonstrated reduced fibronectin fibrillogenesis and production. These findings indicate that nuclear-cytoskeletal coupling serves a role in the dynamic regulation of cytoskeletal structure and function and may also impact the transmission of traction force to the extracellular matrix microenvironment.


Assuntos
Actomiosina , Citoesqueleto , Actomiosina/metabolismo , Regulação para Baixo , Citoesqueleto/metabolismo , Citoesqueleto de Actina/metabolismo
2.
J Med Genet ; 59(9): 906-911, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34493544

RESUMO

BACKGROUND: The molecular genetic basis of pulmonary arterial hypertension (PAH) is heterogeneous, with at least 26 genes displaying putative evidence for disease causality. Heterozygous variants in the ATP13A3 gene were recently identified as a new cause of adult-onset PAH. However, the contribution of ATP13A3 risk alleles to child-onset PAH remains largely unexplored. METHODS AND RESULTS: We report three families with a novel, autosomal recessive form of childhood-onset PAH due to biallelic ATP13A3 variants. Disease onset ranged from birth to 2.5 years and was characterised by high mortality. Using genome sequencing of parent-offspring trios, we identified a homozygous missense variant in one case, which was subsequently confirmed to cosegregate with disease in an affected sibling. Independently, compound heterozygous variants in ATP13A3 were identified in two affected siblings and in an unrelated third family. The variants included three loss of function variants (two frameshift, one nonsense) and two highly conserved missense substitutions located in the catalytic phosphorylation domain. The children were largely refractory to treatment and four died in early childhood. All parents were heterozygous for the variants and asymptomatic. CONCLUSION: Our findings support biallelic predicted deleterious ATP13A3 variants in autosomal recessive, childhood-onset PAH, indicating likely semidominant dose-dependent inheritance for this gene.


Assuntos
Hipertensão Arterial Pulmonar , Adenosina Trifosfatases/genética , Adulto , Pré-Escolar , Hipertensão Pulmonar Primária Familiar/genética , Heterozigoto , Homozigoto , Humanos , Proteínas de Membrana Transportadoras/genética , Morbidade
3.
Proc Natl Acad Sci U S A ; 116(8): 3278-3287, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30718399

RESUMO

Cells express a family of three inositol hexakisphosphate kinases (IP6Ks). Although sharing the same enzymatic activity, individual IP6Ks mediate different cellular processes. Here we report that IP6K3 is enriched at the leading edge of migrating cells where it associates with dynein intermediate chain 2 (DIC2). Using immunofluorescence microscopy and total internal reflection fluorescence microscopy, we found that DIC2 and IP6K3 are recruited interdependently to the leading edge of migrating cells, where they function coordinately to enhance the turnover of focal adhesions. Deletion of IP6K3 causes defects in cell motility and neuronal dendritic growth, eventually leading to brain malformations. Our results reveal a mechanism whereby IP6K3 functions in coordination with DIC2 in a confined intracellular microenvironment to promote focal adhesion turnover.


Assuntos
Dineínas do Citoplasma/genética , Dendritos/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Encéfalo/metabolismo , Encéfalo/patologia , Adesão Celular/genética , Movimento Celular/genética , Microambiente Celular/genética , Adesões Focais/genética , Células HEK293 , Humanos , Neurônios/metabolismo
4.
Pediatr Crit Care Med ; 21(2): e52-e106, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32032273

RESUMO

OBJECTIVES: To develop evidence-based recommendations for clinicians caring for children (including infants, school-aged children, and adolescents) with septic shock and other sepsis-associated organ dysfunction. DESIGN: A panel of 49 international experts, representing 12 international organizations, as well as three methodologists and three public members was convened. Panel members assembled at key international meetings (for those panel members attending the conference), and a stand-alone meeting was held for all panel members in November 2018. A formal conflict-of-interest policy was developed at the onset of the process and enforced throughout. Teleconferences and electronic-based discussion among the chairs, co-chairs, methodologists, and group heads, as well as within subgroups, served as an integral part of the guideline development process. METHODS: The panel consisted of six subgroups: recognition and management of infection, hemodynamics and resuscitation, ventilation, endocrine and metabolic therapies, adjunctive therapies, and research priorities. We conducted a systematic review for each Population, Intervention, Control, and Outcomes question to identify the best available evidence, statistically summarized the evidence, and then assessed the quality of evidence using the Grading of Recommendations Assessment, Development, and Evaluation approach. We used the evidence-to-decision framework to formulate recommendations as strong or weak, or as a best practice statement. In addition, "in our practice" statements were included when evidence was inconclusive to issue a recommendation, but the panel felt that some guidance based on practice patterns may be appropriate. RESULTS: The panel provided 77 statements on the management and resuscitation of children with septic shock and other sepsis-associated organ dysfunction. Overall, six were strong recommendations, 52 were weak recommendations, and nine were best-practice statements. For 13 questions, no recommendations could be made; but, for 10 of these, "in our practice" statements were provided. In addition, 49 research priorities were identified. CONCLUSIONS: A large cohort of international experts was able to achieve consensus regarding many recommendations for the best care of children with sepsis, acknowledging that most aspects of care had relatively low quality of evidence resulting in the frequent issuance of weak recommendations. Despite this challenge, these recommendations regarding the management of children with septic shock and other sepsis-associated organ dysfunction provide a foundation for consistent care to improve outcomes and inform future research.


Assuntos
Insuficiência de Múltiplos Órgãos/terapia , Pediatria/normas , Sepse/terapia , Choque Séptico/terapia , Adolescente , Antibacterianos/uso terapêutico , Criança , Pré-Escolar , Medicina Baseada em Evidências , Hidratação/métodos , Hemodinâmica , Humanos , Lactente , Recém-Nascido , Ácido Láctico/sangue , Insuficiência de Múltiplos Órgãos/diagnóstico , Insuficiência de Múltiplos Órgãos/etiologia , Respiração Artificial/métodos , Ressuscitação/métodos , Sepse/complicações , Sepse/diagnóstico , Choque Séptico/diagnóstico , Vasoconstritores/uso terapêutico
5.
Small ; 14(27): e1702497, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29749014

RESUMO

Interfacing nano/microscale elements with biological components in 3D contexts opens new possibilities for mimicry, bionics, and augmentation of organismically and anatomically inspired materials. Abiotic nanoscale elements such as plasmonic nanostructures, piezoelectric ribbons, and thin film semiconductor devices interact with electromagnetic fields to facilitate advanced capabilities such as communication at a distance, digital feedback loops, logic, and memory. Biological components such as proteins, polynucleotides, cells, and organs feature complex chemical synthetic networks that can regulate growth, change shape, adapt, and regenerate. Abiotic and biotic components can be integrated in all three dimensions in a well-ordered and programmed manner with high tunability, versatility, and resolution to produce radically new materials and hybrid devices such as sensor fabrics, anatomically mimetic microfluidic modules, artificial tissues, smart prostheses, and bionic devices. In this critical Review, applications of small scale devices in 3D hybrid integration, biomicrofluidics, advanced prostheses, and bionic organs are discussed.

7.
Circ Res ; 115(4): 450-9, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24903103

RESUMO

RATIONALE: Increased arginase activity contributes to endothelial dysfunction by competition for l-arginine substrate and reciprocal regulation of nitric oxide synthase (NOS). The rapid increase in arginase activity in human aortic endothelial cells exposed to oxidized low-density lipoprotein (OxLDL) is consistent with post-translational modification or subcellular trafficking. OBJECTIVE: To test the hypotheses that OxLDL triggers reverse translocation of mitochondrial arginase 2 (Arg2) to cytosol and Arg2 activation, and that this process is dependent on mitochondrial processing peptidase, lectin-like OxLDL receptor-1 receptor, and rho kinase. METHODS AND RESULTS: OxLDL-triggered translocation of Arg2 from mitochondria to cytosol in human aortic endothelial cells and in murine aortic intima with a concomitant rise in arginase activity. All of these changes were abolished by inhibition of mitochondrial processing peptidase or by its siRNA-mediated knockdown. Rho kinase inhibition and the absence of the lectin-like OxLDL receptor-1 in knockout mice also ablated translocation. Aminoterminal sequencing of Arg2 revealed 2 candidate mitochondrial targeting sequences, and deletion of either of these confined Arg2 to the cytoplasm. Inhibitors of mitochondrial processing peptidase or lectin-like OxLDL receptor-1 knockout attenuated OxLDL-mediated decrements in endothelial-specific NO production and increases in superoxide generation. Finally, Arg2(-/-) mice bred on an ApoE(-/-) background showed reduced plaque load, reduced reactive oxygen species production, enhanced NO, and improved endothelial function when compared with ApoE(-/-) controls. CONCLUSIONS: These data demonstrate dual distribution of Arg2, a protein with an unambiguous mitochondrial targeting sequence, in mammalian cells, and its reverse translocation to cytoplasm by alterations in the extracellular milieu. This novel molecular mechanism drives OxLDL-mediated arginase activation, endothelial NOS uncoupling, endothelial dysfunction, and atherogenesis.


Assuntos
Aorta/enzimologia , Arginase/metabolismo , Células Endoteliais/enzimologia , Lipoproteínas LDL/metabolismo , Metaloendopeptidases/metabolismo , Mitocôndrias/enzimologia , Quinases Associadas a rho/metabolismo , Sequência de Aminoácidos , Animais , Aorta/efeitos dos fármacos , Aorta/patologia , Aorta/fisiopatologia , Doenças da Aorta/enzimologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Doenças da Aorta/fisiopatologia , Doenças da Aorta/prevenção & controle , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Arginase/genética , Aterosclerose/enzimologia , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Aterosclerose/prevenção & controle , Células Cultivadas , Citosol/enzimologia , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Ativação Enzimática , Humanos , Masculino , Metaloendopeptidases/antagonistas & inibidores , Metaloendopeptidases/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Dados de Sequência Molecular , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico , Interferência de RNA , Receptores Depuradores Classe E/deficiência , Receptores Depuradores Classe E/genética , Transdução de Sinais , Fatores de Tempo , Transfecção , Quinases Associadas a rho/antagonistas & inibidores , Peptidase de Processamento Mitocondrial
8.
J Mol Cell Cardiol ; 81: 18-22, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25655932

RESUMO

Emerging evidence strongly supports a role for HDAC2 in the transcriptional regulation of endothelial genes and vascular function. We have recently demonstrated that HDAC2 reciprocally regulates the transcription of Arginase2, which is itself a critical modulator of endothelial function via eNOS. Moreover HDAC2 levels are decreased in response to the atherogenic stimulus OxLDL via a mechanism that is apparently dependent upon proteasomal degradation. NEDDylation is a post-translational protein modification that is tightly linked to ubiquitination and thereby protein degradation. We propose that changes in NEDDylation may modulate vascular endothelial function in part through alterations in the proteasomal degradation of HDAC2. In HAEC, OxLDL exposure augmented global protein NEDDylation. Pre-incubation of mouse aortic rings with the NEDDylation activating enzyme inhibitor, MLN4924, prevented OxLDL-induced endothelial dysfunction. In HAEC, MLN enhanced HDAC2 abundance, decreased expression and activity of Arginase2, and blocked OxLDL-mediated reduction of HDAC2. Additionally, HDAC2 was shown to be a substrate for NEDD8 conjugation and this interaction was potentiated by OxLDL. Further, HDAC2 levels were reciprocally regulated by ectopic expression of NEDD8 and the de-NEDDylating enzyme SENP8. Our findings indicate that the observed improvement in endothelial dysfunction with inhibition of NEDDylation activating enzyme is likely due to an HDAC2-dependent decrease in Arginase2. NEDDylation activating enzyme may therefore be a novel target in endothelial dysfunction and atherogenesis.


Assuntos
Aterosclerose/genética , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Histona Desacetilase 2/genética , Processamento de Proteína Pós-Traducional , Ubiquitinas/genética , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Arginase/genética , Arginase/metabolismo , Aterosclerose/metabolismo , Aterosclerose/patologia , Linhagem Celular , Ciclopentanos/farmacologia , Endopeptidases/genética , Endopeptidases/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Inibidores Enzimáticos/farmacologia , Histona Desacetilase 2/metabolismo , Humanos , Lipoproteínas LDL/farmacologia , Camundongos , Proteína NEDD8 , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Pirimidinas/farmacologia , Transdução de Sinais , Técnicas de Cultura de Tecidos , Ubiquitinação , Ubiquitinas/metabolismo
9.
Pediatr Crit Care Med ; 21(2): 186-195, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32032264
10.
Pulm Circ ; 13(4): e12305, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37915400

RESUMO

Pulmonary hypertension (PH) is a significant health problem that contributes to high morbidity and mortality in diverse cardiac, pulmonary, and systemic diseases in children. Evidence-based advances in PH care have been challenged by a paucity of quality endpoints for assessing clinical course and the lack of robust clinical trial data to guide pharmacologic therapies in children. While the landmark adult AMBITION trial demonstrated the benefit of up-front combination PH therapy with ambrisentan and tadalafil, it remains unknown whether upfront combination therapy leads to more rapid and sustained clinical benefits in children with various categories of PH. In this article, we describe the inception of the Kids Mod PAH Trial, a multicenter Phase III trial, to address whether upfront combination therapy (sildenafil and bosentan vs. sildenafil alone) improves PH outcomes in children, recognizing that marked differences between the etiology and therapeutic response between adults and children exist. The primary endpoint of this study is WHO functional class (FC) 12 months after initiation of study drug therapy. In addition to the primary outcome, secondary endpoints are being assessed, including a composite measure of time to clinical worsening, WHO FC at 24 months, echocardiographic assessment of PH and quantitative assessment of right ventricular function, 6-min walk distance, and NT-proBNP levels. Exploratory endpoints include selected biomarkers, actigraphy, and assessments of quality of life. This study is designed to pave the way for additional clinical trials by establishing a robust infrastructure through the development of a PPHNet Clinical Trials Network.

11.
Adv Sci (Weinh) ; 9(17): e2104649, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35434926

RESUMO

Multicellular organization with precise spatial definition is essential to various biological processes, including morphogenesis, development, and healing in vascular and other tissues. Gradients and patterns of chemoattractants are well-described guides of multicellular organization, but the influences of 3D geometry of soft hydrogels are less well defined. Here, the discovery of a new mode of endothelial cell self-organization guided by combinatorial effects of stiffness and geometry, independent of protein or chemical patterning, is described. Endothelial cells in 2 kPa microwells are found to be ≈30 times more likely to migrate to the edge to organize in ring-like patterns than in stiff 35 kPa microwells. This organization is independent of curvature and significantly more pronounced in 2 kPa microwells with aspect ratio (perimeter/depth) < 25. Physical factors of cells and substrates that drive this behavior are systematically investigated and a mathematical model that explains the organization by balancing the dynamic interaction between tangential cytoskeletal tension, cell-cell, and cell-substrate adhesion is presented. These findings demonstrate the importance of combinatorial effects of geometry and stiffness in complex cellular organization that can be leveraged to facilitate the engineering of bionics and integrated model organoid systems with customized nutrient vascular networks.


Assuntos
Células Endoteliais , Hidrogéis , Adesão Celular , Células Endoteliais/metabolismo , Hidrogéis/farmacologia
12.
J Cell Biol ; 174(2): 277-88, 2006 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-16847103

RESUMO

Focal adhesion kinase (FAK) transduces cell adhesion to the extracellular matrix into proliferative signals. We show that FAK overexpression induced proliferation in endothelial cells, which are normally growth arrested by limited adhesion. Interestingly, displacement of FAK from adhesions by using a FAK-/- cell line or by expressing the C-terminal fragment FRNK also caused an escape of adhesion-regulated growth arrest, suggesting dual positive and negative roles for FAK in growth regulation. Expressing kinase-dead FAK-Y397F in FAK-/- cells prevented uncontrolled growth, demonstrating the antiproliferative function of inactive FAK. Unlike FAK overexpression-induced growth, loss of growth control in FAK-/- or FRNK-expressing cells increased RhoA activity, cytoskeletal tension, and focal adhesion formation. ROCK inhibition rescued adhesion-dependent growth control in these cells, and expression of constitutively active RhoA or ROCK dysregulated growth. These findings demonstrate the ability of FAK to suppress and promote growth, and underscore the importance of multiple mechanisms, even from one molecule, to control cell proliferation.


Assuntos
Proliferação de Células , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Bovinos , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Forma Celular , Células Cultivadas , Citoesqueleto/metabolismo , Células Endoteliais/citologia , Células Endoteliais/enzimologia , Adesões Focais/metabolismo , Inibidores do Crescimento/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Modelos Biológicos , Proteínas Tirosina Quinases/metabolismo , Quinases Associadas a rho
13.
Biophys J ; 99(9): L78-80, 2010 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-21044567

RESUMO

Recent work has indicated that the shape and size of a cell can influence how a cell spreads, develops focal adhesions, and exerts forces on the substrate. However, it is unclear how cell shape regulates these events. Here we present a computational model that uses cell shape to predict the magnitude and direction of forces generated by cells. The predicted results are compared to experimentally measured traction forces, and show that the model can predict traction force direction, relative magnitude, and force distribution within the cell using only cell shape as an input. Analysis of the model shows that the magnitude and direction of the traction force at a given point is proportional to the first moment of area about that point in the cell, suggesting that contractile forces within the cell act on the entire cytoskeletal network as a single cohesive unit. Through this model, we demonstrate that intrinsic properties of cell shape can facilitate changes in traction force patterns, independently of heterogeneous mechanical properties or signaling events within the cell.


Assuntos
Adesão Celular/fisiologia , Movimento Celular/fisiologia , Forma Celular/fisiologia , Modelos Biológicos , Animais , Fenômenos Biomecânicos , Fenômenos Biofísicos , Células Cultivadas , Citoesqueleto/fisiologia , Camundongos , Transdução de Sinais
14.
Radiat Environ Biophys ; 49(3): 397-404, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20401726

RESUMO

Radiation exposure can increase the risk for many non-malignant physiological complications, including cardiovascular disease. We have previously demonstrated that ionizing radiation can induce endothelial dysfunction, which contributes to increased vascular stiffness. In this study, we demonstrate that gamma radiation exposure reduced endothelial cell viability or proliferative capacity using an in vitro aortic angiogenesis assay. Segments of mouse aorta were embedded in a Matrigel-media matrix 1 day after mice received whole-body gamma irradiation between 0 and 20 Gy. Using three-dimensional phase contrast microscopy, we quantified cellular outgrowth from the aorta. Through fluorescent imaging of embedded aortas from Tie2GFP transgenic mice, we determined that the cellular outgrowth is primarily of endothelial cell origin. Significantly less endothelial cell outgrowth was observed in aortas of mice receiving radiation of 5, 10, and 20 Gy radiation, suggesting radiation-induced endothelial injury. Following 0.5 and 1 Gy doses of whole-body irradiation, reduced outgrowth was still detected. Furthermore, outgrowth was not affected by the location of the aortic segments excised along the descending aorta. In conclusion, a single exposure to gamma radiation significantly reduces endothelial cell outgrowth in a dose-dependent manner. Consequently, radiation exposure may inhibit re-endothelialization or angiogenesis after a vascular injury, which would impede vascular recovery.


Assuntos
Aorta/fisiologia , Aorta/efeitos da radiação , Neovascularização Fisiológica/efeitos da radiação , Animais , Aorta/citologia , Aorta Torácica/citologia , Aorta Torácica/fisiologia , Aorta Torácica/efeitos da radiação , Proliferação de Células/efeitos da radiação , Relação Dose-Resposta à Radiação , Células Endoteliais/citologia , Células Endoteliais/efeitos da radiação , Raios gama , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Irradiação Corporal Total
15.
Mol Biol Cell ; 18(1): 253-64, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17093062

RESUMO

FAK, a cytoplasmic protein tyrosine kinase, is activated and localized to focal adhesions upon cell attachment to extracellular matrix. FAK null cells spread poorly and exhibit altered focal adhesion turnover. Rac1 is a member of the Rho-family GTPases that promotes membrane ruffling, leading edge extension, and cell spreading. We investigated the activation and subcellular location of Rac1 in FAK null and FAK reexpressing fibroblasts. FAK reexpressers had a more robust pattern of Rac1 activation after cell adhesion to fibronectin than the FAK null cells. Translocation of Rac1 to focal adhesions was observed in FAK reexpressers, but seldom in FAK null cells. Experiments with constitutively active L61Rac1 and dominant negative N17Rac1 indicated that the activation state of Rac1 regulated its localization to focal adhesions. We demonstrated that FAK tyrosine-phosphorylated betaPIX and thereby increased its binding to Rac1. In addition, betaPIX facilitated the targeting of activated Rac1 to focal adhesions and the efficiency of cell spreading. These data indicate that FAK has a role in the activation and focal adhesion translocation of Rac1 through the tyrosine phosphorylation of betaPIX.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Matriz Extracelular/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Adesões Focais/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibronectinas/farmacologia , Proteína-Tirosina Quinases de Adesão Focal/deficiência , Adesões Focais/efeitos dos fármacos , Humanos , Camundongos , Fosfotirosina/metabolismo , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Fatores de Troca de Nucleotídeo Guanina Rho
16.
J Mech Behav Biomed Mater ; 104: 103649, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32174407

RESUMO

Recent advancements in 3D printing have revolutionized biomedical engineering by enabling the manufacture of complex and functional devices in a low-cost, customizable, and small-batch fabrication manner. Soft elastomers are particularly important for biomedical applications because they can provide similar mechanical properties as tissues with improved biocompatibility. However, there are very few biocompatible elastomers with 3D printability, and little is known about the material properties of biocompatible 3D printable elastomers. Here, we report a new framework to 3D print a soft, biocompatible, and biostable polycarbonate-based urethane silicone (PCU-Sil) with minimal defects. We systematically characterize the rheological and thermal properties of the material to guide the 3D printing process and have determined a range of processing conditions. Optimal printing parameters such as printing speed, temperature, and layer height are determined via parametric studies aimed at minimizing porosity while maximizing the geometric accuracy of the 3D-printed samples as evaluated via micro-CT. We also characterize the mechanical properties of the 3D-printed structures under quasistatic and cyclic loading, degradation behavior and biocompatibility. The 3D-printed materials show a Young's modulus of 6.9 ± 0.85 MPa and a failure strain of 457 ± 37.7% while exhibiting good cell viability. Finally, compliant and free-standing structures including a patient-specific heart model and a bifurcating arterial structure are printed to demonstrate the versatility of the 3D-printed material. We anticipate that the 3D printing framework presented in this work will open up new possibilities not only for PCU-Sil, but also for other soft, biocompatible and thermoplastic polymers in various biomedical applications requiring high flexibility and strength combined with biocompatibility, such as vascular implants, heart valves, and catheters.


Assuntos
Elastômeros , Impressão Tridimensional , Humanos , Polímeros , Porosidade , Próteses e Implantes
17.
Sci Adv ; 6(13): eaaz2598, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32232160

RESUMO

Changes in structure and function of small muscular arteries play a major role in the pathophysiology of pulmonary hypertension, a burgeoning public health challenge. Improved anatomically mimetic in vitro models of these microvessels are urgently needed because nonhuman vessels and previous models do not accurately recapitulate the microenvironment and architecture of the human microvascular wall. Here, we describe parallel biofabrication of photopatterned self-rolled biomimetic pulmonary arterial microvessels of tunable size and infrastructure. These microvessels feature anatomically accurate layering and patterning of aligned human smooth muscle cells, extracellular matrix, and endothelial cells and exhibit notable increases in endothelial longevity and nitric oxide production. Computational image processing yielded high-resolution 3D perspectives of cells and proteins. Our studies provide a new paradigm for engineering multicellular tissues with precise 3D spatial positioning of multiple constituents in planar moieties, providing a biomimetic platform for investigation of microvascular pathobiology in human disease.


Assuntos
Biomimética , Músculo Liso , Artéria Pulmonar , Engenharia Tecidual , Algoritmos , Biomarcadores , Células Cultivadas , Técnicas de Cocultura , Humanos , Fenômenos Mecânicos , Modelos Teóricos , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais , Engenharia Tecidual/métodos
18.
Intensive Care Med ; 46(Suppl 1): 10-67, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32030529

RESUMO

OBJECTIVES: To develop evidence-based recommendations for clinicians caring for children (including infants, school-aged children, and adolescents) with septic shock and other sepsis-associated organ dysfunction. DESIGN: A panel of 49 international experts, representing 12 international organizations, as well as three methodologists and three public members was convened. Panel members assembled at key international meetings (for those panel members attending the conference), and a stand-alone meeting was held for all panel members in November 2018. A formal conflict-of-interest policy was developed at the onset of the process and enforced throughout. Teleconferences and electronic-based discussion among the chairs, co-chairs, methodologists, and group heads, as well as within subgroups, served as an integral part of the guideline development process. METHODS: The panel consisted of six subgroups: recognition and management of infection, hemodynamics and resuscitation, ventilation, endocrine and metabolic therapies, adjunctive therapies, and research priorities. We conducted a systematic review for each Population, Intervention, Control, and Outcomes question to identify the best available evidence, statistically summarized the evidence, and then assessed the quality of evidence using the Grading of Recommendations Assessment, Development, and Evaluation approach. We used the evidence-to-decision framework to formulate recommendations as strong or weak, or as a best practice statement. In addition, "in our practice" statements were included when evidence was inconclusive to issue a recommendation, but the panel felt that some guidance based on practice patterns may be appropriate. RESULTS: The panel provided 77 statements on the management and resuscitation of children with septic shock and other sepsis-associated organ dysfunction. Overall, six were strong recommendations, 49 were weak recommendations, and nine were best-practice statements. For 13 questions, no recommendations could be made; but, for 10 of these, "in our practice" statements were provided. In addition, 52 research priorities were identified. CONCLUSIONS: A large cohort of international experts was able to achieve consensus regarding many recommendations for the best care of children with sepsis, acknowledging that most aspects of care had relatively low quality of evidence resulting in the frequent issuance of weak recommendations. Despite this challenge, these recommendations regarding the management of children with septic shock and other sepsis-associated organ dysfunction provide a foundation for consistent care to improve outcomes and inform future research.


Assuntos
Guias como Assunto , Pediatria/tendências , Sepse/terapia , Adolescente , Criança , Pré-Escolar , Consenso , Cuidados Críticos/tendências , Humanos , Lactente , Escores de Disfunção Orgânica , Pediatria/métodos
19.
Biophys J ; 96(2): 729-38, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19167317

RESUMO

Interactions between cells and the surrounding matrix are critical to the development and engineering of tissues. We have investigated the role of cell-derived traction forces in the assembly of extracellular matrix using what we believe is a novel assay that allows for simultaneous measurement of traction forces and fibronectin fibril growth at discrete cell-matrix attachment sites. NIH3T3 cells were plated onto arrays of deformable cantilever posts for 2-24 h. Data indicate that developing fibril orientation is guided by the direction of the traction force applied to that fibril. In addition, cells initially establish a spatial distribution of traction forces that is largest at the cell edge and decreases toward the cell center. This distribution progressively shifts from a predominantly peripheral pattern to a more uniform pattern as compressive strain at the cell perimeter decreases with time. The impact of these changes on fibrillogenesis was tested by treating cells with blebbistatin or calyculin A to tonically block or augment, respectively, myosin II activity. Both treatments blocked the inward translation of traction forces, the dissipation of compressive strain, and fibronectin fibrillogenesis over time. These data indicate that dynamic spatial and temporal changes in traction force and local strain may contribute to successful matrix assembly.


Assuntos
Matriz Extracelular/metabolismo , Fibronectinas/fisiologia , Algoritmos , Animais , Adesão Celular/fisiologia , Imunofluorescência , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Processamento de Imagem Assistida por Computador , Toxinas Marinhas , Camundongos , Miosina Tipo II/antagonistas & inibidores , Miosina Tipo II/efeitos dos fármacos , Miosina Tipo II/metabolismo , Células NIH 3T3 , Oxazóis/farmacologia
20.
Crit Care Explor ; 1(8): e0037, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32166278

RESUMO

Pulmonary hypertension is a growing pediatric problem and children may present with pulmonary hypertensive crisis-a life-threatening emergency requiring acute interventions. The aim of this study was to characterize the broad spectrum of care provided in North American PICUs for children who present with pulmonary hypertensive crisis. DESIGN: Electronic cross-sectional survey. Survey questions covered the following: demographics of the respondents, institution, and patient population; pulmonary hypertension diagnostic modalities; pulmonary hypertension-specific pharmacotherapies; supportive therapies, including sedation, ventilation, and inotropic support; and components of multidisciplinary teams. SETTING: PICUs in the United States and Canada. SUBJECTS: Faculty members from surveyed institutions. INTERVENTIONS: None. MEASUREMENT AND MAIN RESULTS: The response rate was 50% of 99 identified institutions. Of the respondents, 82.2% were pediatric intensivists from large units, and 73.9% had over a decade of experience beyond training. Respondents provided care for a median of 10 patients/yr with acute pulmonary hypertensive crisis. Formal echocardiography protocols existed at 61.1% of institutions with varying components reported. There were no consistent indications for cardiac catheterization during a pulmonary hypertensive crisis admission. All institutions used inhaled nitric oxide, and enteral phosphodiesterase type 5 inhibitor was the most frequently used additional targeted vasodilator therapy. Milrinone and epinephrine were the most frequently used vasoactive infusions. Results showed no preferred approach to mechanical ventilation. Fentanyl and dexmedetomidine were the preferred sedative infusions. A formal pulmonary hypertension consulting team was reported at 51.1% of institutions, and the three most common personnel were pediatric cardiologist, pediatric pulmonologist, and advanced practice nurse. CONCLUSIONS: The management of critically ill children with acute pulmonary hypertensive crisis is diverse. Findings from this survey may inform formal recommendations - particularly with regard to care team composition and pulmonary vasodilator therapies - as North American guidelines are currently lacking. Additional work is needed to determine best practice, standardization of practice, and resulting impact on outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA