Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Hum Mol Genet ; 25(19): 4227-4243, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27506979

RESUMO

Mutations that cause increased and/or inappropriate activation of FGFR3 are responsible for a collection of short-limbed chondrodysplasias. These mutations can alter receptor trafficking and enhance receptor stability, leading to increased receptor accumulation and activity. Here, we show that wildtype and mutant activated forms of FGFR3 increase expression of the cytoplasmic deacetylase HDAC6 (Histone Deacetylase 6) and that FGFR3 accumulation is compromised in cells lacking HDAC6 or following treatment of fibroblasts or chondrocytes with small molecule inhibitors of HDAC6. The reduced accumulation of FGFR3 was linked to increased FGFR3 degradation that occurred through a lysosome-dependent mechanism. Using a mouse model of Thanatophoric Dysplasia Type II (TDII) we show that both HDAC6 deletion and treatment with the small molecule HDAC6 inhibitor tubacin reduced FGFR3 accumulation in the growth plate and improved endochondral bone growth. Defective endochondral growth in TDII is associated with reduced proliferation and poor hypertrophic differentiation and the improved bone growth was associated with increased chondrocyte proliferation and expansion of the differentiation compartment within the growth plate. These findings further define the mechanisms that control FGFR3 accumulation and contribute to skeletal pathology caused by mutations in FGFR3.


Assuntos
Acondroplasia/genética , Histona Desacetilases/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Crânio/anormalidades , Displasia Tanatofórica/genética , Acondroplasia/tratamento farmacológico , Acondroplasia/metabolismo , Acondroplasia/patologia , Anilidas/administração & dosagem , Animais , Desenvolvimento Ósseo/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Modelos Animais de Doenças , Inibidores Enzimáticos/administração & dosagem , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/administração & dosagem , Humanos , Ácidos Hidroxâmicos/administração & dosagem , Camundongos , Mutação , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Crânio/metabolismo , Crânio/patologia , Displasia Tanatofórica/metabolismo , Displasia Tanatofórica/patologia
3.
Front Mol Neurosci ; 14: 618360, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34040503

RESUMO

Mucopolysaccharidosis type I (MPS I) is an inherited metabolic disorder caused by deficiency of the lysosomal enzyme alpha-L-iduronidase (IDUA). The two current treatments [hematopoietic stem cell transplantation (HSCT) and enzyme replacement therapy (ERT)], are insufficiently effective in addressing neurologic disease, in part due to the inability of lysosomal enzyme to cross the blood brain barrier. With a goal to more effectively treat neurologic disease, we have investigated the effectiveness of AAV-mediated IDUA gene delivery to the brain using several different routes of administration. Animals were treated by either direct intracerebroventricular (ICV) injection, by intrathecal (IT) infusion into the cerebrospinal fluid, or by intranasal (IN) instillation of AAV9-IDUA vector. AAV9-IDUA was administered to IDUA-deficient mice that were either immunosuppressed with cyclophosphamide (CP), or immunotolerized at birth by weekly injections of human iduronidase. In animals treated by ICV or IT administration, levels of IDUA enzyme ranged from 3- to 1000-fold that of wild type levels in all parts of the microdissected brain. In animals administered vector intranasally, enzyme levels were 100-fold that of wild type in the olfactory bulb, but enzyme expression was close to wild type levels in other parts of the brain. Glycosaminoglycan levels were reduced to normal in ICV and IT treated mice, and in IN treated mice they were normalized in the olfactory bulb, or reduced in other parts of the brain. Immunohistochemical analysis showed extensive IDUA expression in all parts of the brain of ICV treated mice, while IT treated animals showed transduction that was primarily restricted to the hind brain with some sporadic labeling seen in the mid- and fore brain. At 6 months of age, animals were tested for spatial navigation, memory, and neurocognitive function in the Barnes maze; all treated animals were indistinguishable from normal heterozygous control animals, while untreated IDUA deficient animals exhibited significant learning and spatial navigation deficits. We conclude that IT and IN routes are acceptable and alternate routes of administration, respectively, of AAV vector delivery to the brain with effective IDUA expression, while all three routes of administration prevent the emergence of neurocognitive deficiency in a mouse MPS I model.

4.
Neuro Oncol ; 22(9): 1302-1314, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32166329

RESUMO

BACKGROUND: Diffuse midline gliomas (DMG), including brainstem diffuse intrinsic pontine glioma (DIPG), are incurable pediatric high-grade gliomas (pHGG). Mutations in the H3 histone tail (H3.1/3.3-K27M) are a feature of DIPG, rendering them therapeutically sensitive to small-molecule inhibition of chromatin modifiers. Pharmacological inhibition of lysine-specific demethylase 1 (LSD1) is clinically relevant but has not been carefully investigated in pHGG or DIPG. METHODS: Patient-derived DIPG cell lines, orthotopic mouse models, and pHGG datasets were used to evaluate effects of LSD1 inhibitors on cytotoxicity and immune gene expression. Immune cell cytotoxicity was assessed in DIPG cells pretreated with LSD1 inhibitors, and informatics platforms were used to determine immune infiltration of pHGG. RESULTS: Selective cytotoxicity and an immunogenic gene signature were established in DIPG cell lines using clinically relevant LSD1 inhibitors. Pediatric HGG patient sequencing data demonstrated survival benefit of this LSD1-dependent gene signature. Pretreatment of DIPG with these inhibitors increased lysis by natural killer (NK) cells. Catalytic LSD1 inhibitors induced tumor regression and augmented NK cell infusion in vivo to reduce tumor burden. CIBERSORT analysis of patient data confirmed NK infiltration is beneficial to patient survival, while CD8 T cells are negatively prognostic. Catalytic LSD1 inhibitors are nonperturbing to NK cells, while scaffolding LSD1 inhibitors are toxic to NK cells and do not induce the gene signature in DIPG cells. CONCLUSIONS: LSD1 inhibition using catalytic inhibitors is selectively cytotoxic and promotes an immune gene signature that increases NK cell killing in vitro and in vivo, representing a therapeutic opportunity for pHGG. KEY POINTS: 1. LSD1 inhibition using several clinically relevant compounds is selectively cytotoxic in DIPG and shows in vivo efficacy as a single agent.2. An LSD1-controlled gene signature predicts survival in pHGG patients and is seen in neural tissue from LSD1 inhibitor-treated mice.3. LSD1 inhibition enhances NK cell cytotoxicity against DIPG in vivo and in vitro with correlative genetic biomarkers.


Assuntos
Neoplasias do Tronco Encefálico , Glioma , Animais , Neoplasias do Tronco Encefálico/tratamento farmacológico , Criança , Glioma/tratamento farmacológico , Histonas/genética , Humanos , Lisina , Camundongos , Mutação
5.
Nat Neurosci ; 23(7): 842-853, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32424282

RESUMO

Many immunotherapies act by enhancing the ability of cytotoxic T cells to kill tumor cells. Killing depends on T cell recognition of antigens presented by class I major histocompatibility complex (MHC-I) proteins on tumor cells. In this study, we showed that medulloblastomas lacking the p53 tumor suppressor do not express surface MHC-I and are therefore resistant to immune rejection. Mechanistically, this is because p53 regulates expression of the peptide transporter Tap1 and the aminopeptidase Erap1, which are required for MHC-I trafficking to the cell surface. In vitro, tumor necrosis factor (TNF) or lymphotoxin-ß receptor agonist can rescue expression of Erap1, Tap1 and MHC-I on p53-mutant tumor cells. In vivo, low doses of TNF prolong survival and synergize with immune checkpoint inhibitors to promote tumor rejection. These studies identified p53 as a key regulator of immune evasion and suggest that TNF could be used to enhance sensitivity of tumors to immunotherapy.


Assuntos
Neoplasias Cerebelares/imunologia , Meduloblastoma/imunologia , Evasão Tumoral/imunologia , Fator de Necrose Tumoral alfa/imunologia , Proteína Supressora de Tumor p53/imunologia , Animais , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Meduloblastoma/genética , Meduloblastoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Fator de Necrose Tumoral alfa/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
6.
Cell Death Differ ; 26(3): 502-515, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29988075

RESUMO

Platinum-based chemotherapies can result in ovarian insufficiency by reducing the ovarian reserve, a reduction believed to result from apoptosis of immature oocytes via activation/phosphorylation of TAp63α by multiple kinases including CHEK2, CK1, and ABL1. Here we demonstrate that cisplatin (CDDP) induces oocyte apoptosis through a novel pathway and that temporary repression of this pathway fully preserves ovarian function in vivo. Although ABL kinase inhibitors effectively block CDDP-induced apoptosis of oocytes, oocytic ABL1, and ABL2 are dispensable for damage-induced apoptosis. Instead, CDDP activates TAp63α through the ATR > CHEK1 pathway independent of TAp63α hyper-phosphorylation, whereas X-irradiation activates the ATM > CHEK2 > TAp63α-hyper-phosphorylation pathway. Furthermore, oocyte-specific deletion of Trp73 partially protects oocytes from CDDP but not from X-ray, highlighting the fundamental differences of two pathways. Nevertheless, temporary repression of DNA damage response by a kinase inhibitor that attenuates phosphorylation of ATM, ATR, CHEK1, and CHEK2 fully preserves fertility in female mice against CDDP as well as X-ray. Our current study establishes the molecular basis and feasibility of adjuvant therapies to protect ovarian function against two distinctive gonadotoxic therapeutics, CDDP, and ionizing radiation.


Assuntos
Antineoplásicos/efeitos adversos , Ovário/patologia , Insuficiência Ovariana Primária/etiologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose , Feminino , Humanos , Camundongos , Insuficiência Ovariana Primária/patologia
7.
Nat Commun ; 10(1): 1023, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833574

RESUMO

Diffuse intrinsic pontine glioma (DIPG) is an incurable pediatric brain tumor, with approximately 25% of DIPGs harboring activating ACVR1 mutations that commonly co-associate with H3.1K27M mutations. Here we show that in vitro expression of ACVR1 R206H with and without H3.1K27M upregulates mesenchymal markers and activates Stat3 signaling. In vivo expression of ACVR1 R206H or G328V with H3.1K27M and p53 deletion induces glioma-like lesions but is not sufficient for full gliomagenesis. However, in combination with PDGFA signaling, ACVR1 R206H and H3.1K27M significantly decrease survival and increase tumor incidence. Treatment of ACVR1 R206H mutant DIPGs with exogenous Noggin or the ACVR1 inhibitor LDN212854 significantly prolongs survival, with human ACVR1 mutant DIPG cell lines also being sensitive to LDN212854 treatment. Together, our results demonstrate that ACVR1 R206H and H3.1K27M promote tumor initiation, accelerate gliomagenesis, promote a mesenchymal profile partly due to Stat3 activation, and identify LDN212854 as a promising compound to treat DIPG.


Assuntos
Receptores de Ativinas Tipo I/metabolismo , Astrocitoma/metabolismo , Neoplasias do Tronco Encefálico/metabolismo , Genoma Humano/genética , Glioma/metabolismo , Histonas/metabolismo , Receptores de Ativinas Tipo I/genética , Animais , Astrocitoma/tratamento farmacológico , Astrocitoma/genética , Astrocitoma/patologia , Neoplasias do Tronco Encefálico/tratamento farmacológico , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/patologia , Proteínas de Transporte/farmacologia , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Histonas/genética , Humanos , Camundongos , Mutação , Fator de Crescimento Derivado de Plaquetas/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Quinolinas/farmacologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
8.
J Chem Neuroanat ; 89: 11-20, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29481900

RESUMO

Tics and compulsions in comorbid Tourette's syndrome (TS) and obsessive-compulsive disorder (OCD) are associated with chronic hyperactivity of parallel cortico/amygdalo-striato-thalamo-cortical (CSTC) loop circuits. Comorbid TS- & OCD-like behaviors have likewise been observed in D1CT-7 mice, in which an artificial neuropotentiating transgene encoding the cAMP-elevating intracellular subunit of cholera toxin (CT) is chronically expressed selectively in somatosensory cortical & amygdalar dopamine (DA) D1 receptor-expressing neurons that activate cortico/amygdalo-striatal glutamate (GLU) output. We've now examined in D1CT-7 mice whether the chronic GLU output from their potentiated cortical/limbic CSTC subcircuit afferents associated with TS- & OCD-like behaviors elicits desensitizing neurochemical changes in the striatum (STR). Microdialysis-capillary electrophoresis and in situ hybridization reveal that the mice's chronic GLU-excited STR exhibits pharmacodynamic changes in three independently GLU-regulated measures of output neuron activation, co-excitation, and desensitization, signifying hyperactive striatal CSTC output and compensatory striatal glial and neuronal desensitization: 1) Striatal GABA, an output neurotransmitter induced by afferent GLU, is increased. 2) Striatal d-serine, a glial excitatory co-transmitter inhibited by afferent GLU, is decreased. 3) Striatal Period1 (Per1), which plays a non-circadian role in the STR as a GLU + DA D1- (cAMP-) dependent repressor thought to feedback-inhibit GLU + DA- triggered ultradian urges and motions, is transcriptionally abolished. These data imply that chronic cortical/limbic GLU excitation of the STR desensitizes its co-excitatory d-serine & DA inputs while freezing its GABA output in an active state to mediate chronic tics and compulsions - possibly in part by abolishing striatal Per1-dependent ultradian extinction of urges and motions.


Assuntos
Biomarcadores/análise , Encéfalo/fisiopatologia , Transtorno Obsessivo-Compulsivo/fisiopatologia , Síndrome de Tourette/fisiopatologia , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Glutamina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Transtorno Obsessivo-Compulsivo/metabolismo , Síndrome de Tourette/metabolismo
10.
Cancer Res ; 76(13): 3851-61, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27197196

RESUMO

Cell-cell interactions play crucial roles in the maintenance of tissue homeostasis, a loss of which often leads to varying diseases, including cancer. Here, we report that uncontrolled PI3K activity within oocytes irreversibly transforms granulosa cells (GC), causing GC tumors (GCT) through perturbed local cell communication. Previously, we reported reproductive phenotypes of transgenic mice, in which expression of constitutively active mutant PI3K was induced in primordial oocytes by Gdf9-iCre. The transgenic mice (Cre(+)) demonstrated severe ovarian phenotypes, including the overgrowth of excess ovarian follicles and anovulation. Surprisingly, the Cre(+) mice became cachectic by postnatal day 80 due to bilateral GCT. Although GCT cells proliferated independently of oocytes, local interactions with mutant PI3K-positive oocytes during early folliculogenesis were essential for the GC transformation. Growing GCT cells expressed high levels of inhibin ßA and nuclear SMAD3, and the proliferation rate was positively correlated with a high activin A to inhibin A ratio. These results suggested that the tumor cells stimulated their growth through an activin A autocrine signaling pathway, a hypothesis confirmed by activin A secretion in cultured GCT cells, which proliferated in response. Although communication between the oocyte and surrounding somatic cells is critical for the normal development of ovarian follicles, perturbations in oocyte-GC communication during early folliculogenesis can induce GCT by activating an autocrine growth circuit program in GC. Cancer Res; 76(13); 3851-61. ©2016 AACR.


Assuntos
Tumor de Células da Granulosa/patologia , Oócitos/enzimologia , Folículo Ovariano/enzimologia , Fosfatidilinositol 3-Quinases/fisiologia , Animais , Células Cultivadas , Ativação Enzimática , Feminino , Tumor de Células da Granulosa/genética , Tumor de Células da Granulosa/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Oócitos/patologia , Folículo Ovariano/patologia , Transdução de Sinais
11.
Sci Rep ; 5: 17323, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26612176

RESUMO

In vitro follicle growth is a potential approach to preserve fertility for young women who are facing a risk of premature ovarian failure (POF) caused by radiation or chemotherapy. Our two-step follicle culture strategy recapitulated the dynamic human follicle growth environment in vitro. Follicles developed from the preantral to antral stage, and, for the first time, produced meiotically competent metaphase II (MII) oocytes after in vitro maturation (IVM).


Assuntos
Fertilização in vitro , Oócitos/crescimento & desenvolvimento , Folículo Ovariano/crescimento & desenvolvimento , Técnicas de Cultura de Tecidos/métodos , Adulto , Alginatos/química , Hormônio Antimülleriano/biossíntese , Hormônio Antimülleriano/metabolismo , Estradiol/biossíntese , Estradiol/metabolismo , Feminino , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Humanos , Hidrogéis/química , Metáfase , Oócitos/citologia , Oócitos/metabolismo , Folículo Ovariano/citologia , Folículo Ovariano/metabolismo , Insuficiência Ovariana Primária/prevenção & controle , Progesterona/biossíntese , Progesterona/metabolismo , Técnicas de Cultura de Tecidos/instrumentação
12.
Endocrinology ; 156(4): 1464-76, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25594701

RESUMO

In this study, we explored the effects of oocytic phosphoinositide 3-kinase (PI3K) activation on folliculogensis by generating transgenic mice, in which the oocyte-specific Cre-recombinase induces the expression of constitutively active mutant PI3K during the formation of primordial follicles. The ovaries of neonatal transgenic (Cre+) mice showed significantly reduced apoptosis in follicles, which resulted in an excess number of follicles per ovary. Thus, the elevation of phosphatidylinositol (3,4,5)-trisphosphate levels within oocytes promotes the survival of follicles during neonatal development. Despite the increase in AKT phosphorylation, primordial follicles in neonatal Cre+ mice remained dormant demonstrating a nuclear accumulation of phosphatase and tensin homolog deleted on chromosome 10 (PTEN). These primordial follicles containing a high level of nuclear PTEN persisted in postpubertal females, suggesting that PTEN is the dominant factor in the maintenance of female reproductive lifespan through the regulation of primordial follicle recruitment. Although the oocytic PI3K activity and PTEN levels were elevated, the activation of primordial follicles and the subsequent accumulation of antral follicles with developmentally competent oocytes progressed normally in prepubertal Cre+ mice. However, mature Cre+ female mice were anovulatory. Because postnatal day 50 Cre+ mice released cumulus-oocyte complexes with developmentally competent oocytes in response to super-ovulation treatment, the anovulatory phenotype was not due to follicular defects but rather endocrine abnormalities, which were likely caused by the excess number of overgrown follicles. Our current study has elucidated the critical role of oocytic PI3K activity in follicular function, as well as the presence of a PTEN-mediated mechanism in the prevention of immature follicle activation.


Assuntos
Sobrevivência Celular/fisiologia , Oócitos/metabolismo , Folículo Ovariano/crescimento & desenvolvimento , Ovário/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Feminino , Camundongos , Camundongos Transgênicos , Folículo Ovariano/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosforilação , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA