RESUMO
Constant exposure to a variety of environmental factors has become increasingly problematic. A variety of illnesses are initiated or aided by the presence of certain perturbing factors. In the case of autism spectrum disorder, the environmental component plays an important part in determining the overall picture. Moreover, the lack of therapies to relieve existing symptoms complicates the fight against this condition. As a result, animal models have been used to make biomedical research easier and more suited for disease investigations. The current study used zebrafish as an animal model to mimic a real-life scenario: acute exposure to an increased dose of pesticides, followed by prospective intervention-based therapy with vitamin B12 (vit. B12). It is known that vit. B12 is involved in brain function nerve tissue, and red blood cell formation. Aside from this, the role of vit. B12 in the redox processes is recognized for its help against free radicals. To investigate the effect of vit. B12, fish were divided into four different groups and exposed to a pesticide mixture (600 µg L-1 fipronil + 600 µg L-1 pyriproxyfen) and 0.24 µg L-1 vit. B12 for 14 days. The impact of the compounds was assessed daily with EthoVision XT 11.5 software for behavioral observations, especially for sociability, quantified by the social interaction test. In addition, at the end of the study, the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), and malondialdehyde (MDA) were measured. The results showed significant improvements in locomotor activity parameters and a positive influence of the vitamin on sociability. Regarding the state of oxidative stress, high activity was found for SOD and GPx in the case of vit. B12, while fish exposed to the mixture of pesticides and vit. B12 had a lower level of MDA. In conclusion, the study provides new data about the effect of vit. B12 in zebrafish, highlighting the potential use of vitamin supplementation to maintain and support the function of the organism.
RESUMO
(1) Background: The antiviral treatment for COVID-19 disease started to be largely used in 2020 and has been found to be efficient, although it is not specific for SARS-CoV-2 virus. There were some concerns that it may produce liver damage or other side effects. (2) Methods: The aim of this study was to observe if antiviral therapy is affecting liver parameters or producing other side-effects in patients hospitalized for COVID-19 disease. The study included a group of patients hospitalized in the internal medicine department of Oradea Municipal Clinical Hospital, Romania, between August 2020-June 2021, diagnosed with SARS-CoV-2 viral infection by RT-PCR method or rapid antigen test. During hospitalization, patients were treated with a Lopinavir/Ritonavir (Kaletra) combination, or with Favipiravir or Remdesivir. In addition to monitoring the evolution of the disease (clinical and biochemical), also hepatic parameters were analyzed at admission, during hospitalization, and at discharge. (3) Results: In the group of studied patients, the mean value of aspartat aminotrensferase did not increase above normal at discharge, alanin aminotransferase increased, but below twice the normal values, and cholestasis registered a statistically insignificant slight increase. (4) Conclusions: In our study, we found that all three antivirals were generally well tolerated and their use did not alter liver function in a significant manner.
RESUMO
Hydrogels based on natural and synthetic polymers and inorganic nanoparticles proved to be a viable strategy in the fight against some Gram-positive and Gram-negative bacteria. Additionally, numerous studies have demonstrated the advantages of using ZnO nanoparticles in medicine due to their high antibacterial efficacy and relatively low cost. Consequently, the purpose of our study was to incorporate ZnO nanoparticles into chitosan/poly (vinyl alcohol)-based hydrogels in order to obtain a biocomposite with antimicrobial properties. These biocomposite hydrogels, prepared by a double crosslinking (covalent and ionic) were characterized from a structural, morphological, swelling degree, and mechanical point of view. FTIR spectroscopy demonstrated both the apparition of new imine and acetal bonds due to covalent crosslinking and the presence of the sulfate group following ionic crosslinking. The morphology, swelling degree, and mechanical properties of the obtained hydrogels were influenced by both the degree of covalent crosslinking and the amount of ZnO nanoparticles incorporated. In vitro cytotoxicity assessment showed that hydrogels without ZnONPs are non-cytotoxic while the biocomposite hydrogels are weak (with 3% ZnONPs) or moderately (with 4 and 5% ZnONPs) cytotoxic. Compared to nanoparticle-free hydrogels, the biocomposite hydrogels show significant antimicrobial activity against S. aureus, E. coli, and K. pneumonia.