Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Transl Med ; 22(1): 77, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243248

RESUMO

BACKGROUND: The sarcoplasmic reticulum (SR) Ca2+ ATPase (SERCA2a) depression substantially contributes to diastolic dysfunction in heart failure (HF), suggesting that SERCA2a stimulation may be a mechanism-based HF therapy. Istaroxime is a drug endowed with both a SERCA2a stimulatory activity and a Na+/K+ pump inhibitory activity for acute HF treatment. Its main metabolite PST3093 shows a more favorable therapeutic profile as compared to the parent drug, but it is still unsuitable for chronic usage. Novel PST3093 derivatives have been recently developed for oral (chronic) HF treatment; compound 8 was selected among them and here characterized. METHODS: Effects of compound 8 were evaluated in a context of SERCA2a depression, by using streptozotocin-treated rats, a well-known model of diastolic dysfunction. The impact of SERCA2a stimulation by compound 8 was assessed at the cellular level ad in vivo, following i.v. infusion (acute effects) or oral administration (chronic effects). RESULTS: As expected from SERCA2a stimulation, compound 8 induced SR Ca2+ compartmentalization in STZ myocytes. In-vivo echocardiographic analysis during i.v. infusion and after repeated oral administration of compound 8, detected a significant improvement of diastolic function. Moreover, compound 8 did not affect electrical activity of healthy guinea-pig myocytes, in line with the absence of off-target effects. Finally, compound 8 was well tolerated in mice with no evidence of acute toxicity. CONCLUSIONS: The pharmacological evaluation of compound 8 indicates that it may be a safe and selective drug for a mechanism-based treatment of chronic HF by restoring SERCA2a activity.


Assuntos
Etiocolanolona/análogos & derivados , Insuficiência Cardíaca , Ratos , Camundongos , Animais , Cobaias , Insuficiência Cardíaca/metabolismo , Doença Crônica , Inibidores Enzimáticos , Cardiotônicos/uso terapêutico , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Miócitos Cardíacos/metabolismo , Cálcio/metabolismo
2.
J Pharmacol Exp Ther ; 384(1): 231-244, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36153005

RESUMO

Heart failure (HF) therapeutic toolkit would strongly benefit from the availability of ino-lusitropic agents with a favorable pharmacodynamics and safety profile. Istaroxime is a promising agent, which combines Na+/K+ pump inhibition with sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) stimulation; however, it has a very short half-life and extensive metabolism to a molecule named PST3093. The present work aims to investigate whether PST3093 still retains the pharmacodynamic and pharmacokinetic properties of its parent compound. We studied PST3093 for its effects on SERCA2a and Na+/K+ ATPase activities, Ca2+ dynamics in isolated myocytes, and hemodynamic effects in an in vivo rat model of diabetic [streptozotocin (STZ)-induced] cardiomyopathy. Istaroxime infusion in HF patients led to accumulation of PST3093 in the plasma; clearance was substantially slower for PST3093 than for istaroxime. In cardiac rat preparations, PST3093 did not inhibit the Na+/K+ ATPase activity but retained SERCA2a stimulatory activity. In in vivo echocardiographic assessment, PST3093 improved overall cardiac performance and reversed most STZ-induced abnormalities. PST3093 intravenous toxicity was considerably lower than that of istaroxime, and it failed to significantly interact with 50 off-targets. Overall, PST3093 is a "selective" SERCA2a activator, the prototype of a novel pharmacodynamic category with a potential in the ino-lusitropic approach to HF with prevailing diastolic dysfunction. Its pharmacodynamics are peculiar, and its pharmacokinetics are suitable to prolong the cardiac beneficial effect of istaroxime infusion. SIGNIFICANCE STATEMENT: Heart failure (HF) treatment would benefit from the availability of ino-lusitropic agents with favourable profiles. PST3093 is the main metabolite of istaroxime, a promising agent combining Na+/K+ pump inhibition and sarcoplasmic reticulum Ca2+ ATPase2a (SERCA2a) stimulation. PST3093 shows a longer half-life in human circulation compared to istaroxime, selectively activates SERCA2a, and improves cardiac performance in a model of diabetic cardiomyopathy. Overall, PST3093 as a selective SERCA2a activator can be considered the prototype of a novel pharmacodynamic category for HF treatment.


Assuntos
Insuficiência Cardíaca , Coração , Animais , Humanos , Ratos , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologia , Adenosina Trifosfatases/uso terapêutico , Etiocolanolona/farmacologia , Etiocolanolona/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Miócitos Cardíacos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/uso terapêutico
3.
Int J Mol Sci ; 22(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34948294

RESUMO

Phospholamban (PLN) is the natural inhibitor of the sarco/endoplasmic reticulum Ca2+ ATP-ase (SERCA2a). Heterozygous PLN p.Arg14del mutation is associated with an arrhythmogenic dilated cardiomyopathy (DCM), whose pathogenesis has been attributed to SERCA2a "superinhibition". AIM: To test in cardiomyocytes (hiPSC-CMs) derived from a PLN p.Arg14del carrier whether (1) Ca2+ dynamics and protein localization were compatible with SERCA2a superinhibition and (2) if functional abnormalities could be reverted by pharmacological SERCA2a activation (PST3093). METHODS: Ca2+ transients (CaT) were recorded at 36 °C in hiPSC-CMs clusters during field stimulation. SERCA2a and PLN where immunolabeled in single hiPSC-CMs. Mutant preparations (MUT) were compared to isogenic wild-type ones (WT), obtained by mutation reversal. RESULTS: WT and MUT differed for the following properties: (1) CaT time to peak (tpeak) and half-time of CaT decay were shorter in MUT; (2) several CaT profiles were identified in WT, "hyperdynamic" ones largely prevailed in MUT; (3) whereas tpeak rate-dependently declined in WT, it was shorter and rate-independent in MUT; (4) diastolic Ca2+ rate-dependently accumulated in WT, but not in MUT. When applied to WT, PST3093 turned all the above properties to resemble those of MUT; when applied to MUT, PST3093 had a smaller or negligible effect. Preferential perinuclear SERCA2a-PLN localization was lost in MUT hiPSC-CMs. CONCLUSIONS: Functional data converge to argue for PLN p.Arg14del incompetence in inhibiting SERCA2a in the tested case, thus weakening the rationale for therapeutic SERCA2a activation. Mechanisms alternative to SERCA2a superinhibition should be considered in the pathogenesis of DCM, possibly including dysregulation of Ca2+-dependent transcription.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Miócitos Cardíacos/metabolismo , Adulto , Animais , Cálcio/metabolismo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Bovinos , Células Cultivadas , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Feminino , Heterozigoto , Humanos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
4.
Basic Res Cardiol ; 112(2): 12, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28101642

RESUMO

Blockade of the late Na+ current (I NaL) protects from ischemia/reperfusion damage; nevertheless, information on changes in I NaL during acute ischemia and their effect on intracellular milieu is missing. I NaL, cytosolic Na+ and Ca2+ activities (Nacyt, Cacyt) were measured in isolated rat ventricular myocytes during 7 min of simulated ischemia (ISC); in all the conditions tested, effects consistently exerted by ranolazine (RAN) and tetrodotoxin (TTX) were interpreted as due to I NaL blockade. The results indicate that I NaL was enhanced during ISC in spite of changes in action potential (AP) contour; I NaL significantly contributed to Nacyt rise, but only marginally to Cacyt rise. The impact of I NaL on Cacyt was markedly enhanced by blockade of the sarcolemmal(s) Na+/Ca2+ exchanger (NCX) and was due to the presence of (Na+-sensitive) Ca2+ efflux through mitochondrial NCX (mNCX). sNCX blockade increased Cacyt and decreased Nacyt, thus indicating that, throughout ISC, sNCX operated in the forward mode, in spite of the substantial Nacyt increment. Thus, a robust Ca2+ source, other than sNCX and including mitochondria, contributed to Cacyt during ISC. Most, but not all, of RAN effects were shared by TTX. (1) The paradigm that attributes Cacyt accumulation during acute ischemia to decrease/reversal of sNCX transport may not be of general applicability; (2) I NaL is enhanced during ISC, when the effect of Nacyt on mitochondrial Ca2+ transport may substantially contribute to I NaL impact on Cacyt; (3) RAN may act mostly, but not exclusively, through I NaL blockade during ISC.


Assuntos
Cálcio/metabolismo , Isquemia Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Sódio/metabolismo , Potenciais de Ação , Animais , Homeostase/fisiologia , Masculino , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
5.
Pflugers Arch ; 467(8): 1757-68, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25236919

RESUMO

Recent evidence of beneficial effects of ranolazine (RAN) in type II diabetes motivates interest in the role of the late sodium current (INaL) in glucose-stimulated insulin secretion. In the present work, we characterize INaL and its function in rat INS-1E cells and human islets cells. INaL was identified as steady-state current blocked by 10 µM RAN (IRAN) or 0.5 µM tetrodotoxin (TTX) (ITTX). Veratridine (VERA, 40 µM) was used as INaL enhancer. Baseline INaL was similar between INS-1E and human islet cells. In INS-1E cells, activated by glucose or tolbutamide, TTX or RAN hyperpolarized membrane potential (V m). VERA-induced depolarization was countered by TTX or RAN. ITTX and IRAN reversal potentials were negative to Na(+) equilibrium one, but they approached it after Na(+) substitution with Li(+) or when K(+) channels were blocked. This revealed INaL coupling with Na(+)-activated K(+) current (IKNa); expression of IKNa channels (Slick/Slack) was confirmed by transcript analysis and Western blot. RAN or TTX blunted cytosolic Ca(2+) response to depolarization. Long-term incubation in high (33 mM) glucose (CHG) constitutively enhanced INaL. VERA immediately increased glucose-stimulated insulin secretion. CHG increased glucose-independent secretion instead and abolished the secretory response to glucose. RAN or TTX countered VERA- and CHG-induced changes in insulin secretion. Our study demonstrated that (1) INaL was expressed in insulin-secreting cells and coupled to IKNa; INaL affected cytosolic Ca(2+) but, unless enhanced, barely contributed to glucose-stimulated insulin secretion (GSIS); and (2) sustained hyperglycemic stress enhanced INaL, which contributed to the attending increase of glucose-independent insulin "leak" and GSIS impairment.


Assuntos
Células Secretoras de Insulina/metabolismo , Sódio/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Linhagem Celular , Glucose/farmacologia , Humanos , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Potenciais da Membrana , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/genética , Canais de Potássio/metabolismo , Canais de Potássio Ativados por Sódio , RNA Mensageiro/metabolismo , Ratos , Fatores de Tempo , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos , Canais de Sódio Disparados por Voltagem/genética
6.
Adv Sci (Weinh) ; 11(3): e2304303, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37948328

RESUMO

Optical stimulation in the red/near infrared range recently gained increasing interest, as a not-invasive tool to control cardiac cell activity and repair in disease conditions. Translation of this approach to therapy is hampered by scarce efficacy and selectivity. The use of smart biocompatible materials, capable to act as local, NIR-sensitive interfaces with cardiac cells, may represent a valuable solution, capable to overcome these limitations. In this work, a far red-responsive conjugated polymer, namely poly[2,1,3-benzothiadiazole-4,7-diyl[4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene-2,6-diyl]] (PCPDTBT) is proposed for the realization of photoactive interfaces with cardiomyocytes derived from pluripotent stem cells (hPSC-CMs). Optical excitation of the polymer turns into effective ionic and electrical modulation of hPSC-CMs, in particular by fastening Ca2+ dynamics, inducing action potential shortening, accelerating the spontaneous beating frequency. The involvement in the phototransduction pathway of Sarco-Endoplasmic Reticulum Calcium ATPase (SERCA) and Na+ /Ca2+ exchanger (NCX) is proven by pharmacological assays and is correlated with physical/chemical processes occurring at the polymer surface upon photoexcitation. Very interestingly, an antiarrhythmogenic effect, unequivocally triggered by polymer photoexcitation, is also observed. Overall, red-light excitation of conjugated polymers may represent an unprecedented opportunity for fine control of hPSC-CMs functionality and can be considered as a perspective, noninvasive approach to treat arrhythmias.


Assuntos
Miócitos Cardíacos , Células-Tronco Pluripotentes , Polímeros/farmacologia
7.
Nanoscale ; 16(33): 15835, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39139073

RESUMO

Correction for 'Chitosan-gated organic transistors printed on ethyl cellulose as a versatile platform for edible electronics and bioelectronics' by Alina S. Sharova et al., Nanoscale, 2023, 15, 10808-10819, https://doi.org/10.1039/D3NR01051A.

8.
ACS Appl Mater Interfaces ; 15(30): 35973-35985, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37467460

RESUMO

The design of soft and nanometer-scale photoelectrodes able to stimulate and promote the intracellular concentration of reactive oxygen species (ROS) is searched for redox medicine applications. In this work, we show semiconducting polymer porous thin films with an enhanced photoelectrochemical generation of ROS in human umbilical vein endothelial cells (HUVECs). To achieve that aim, we synthesized graft copolymers, made of poly(3-hexylthiophene) (P3HT) and degradable poly(lactic acid) (PLA) segments, P3HT-g-PLA. In a second step, the hydrolysis of sacrificial PLA leads to nanometer-scale porous P3HT thin films. The pore sizes in the nm regime (220-1200 nm) were controlled by the copolymer composition and the structural arrangement of the copolymers during the film formation, as determined by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The porous P3HT thin films showed enhanced photofaradaic behavior, generating a higher concentration of ROS in comparison to non-porous P3HT films, as determined by scanning electrochemical microscopy (SECM) measurements. The exogenous ROS production was able to modulate the intracellular ROS concentration in HUVECs at non-toxic levels, thus affecting the physiological functions of cells. Results presented in this work provide an important step forward in the development of new tools for precise, on-demand, and non-invasive modulation of intracellular ROS species and may be potentially extended to many other physiological or pathological cell models.


Assuntos
Nanoporos , Polímeros , Humanos , Polímeros/química , Espécies Reativas de Oxigênio , Células Endoteliais , Poliésteres
9.
Nanoscale ; 15(46): 18716-18726, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37953671

RESUMO

Angiogenesis is a fundamental process in biology, given the pivotal role played by blood vessels in providing oxygen and nutrients to tissues, thus ensuring cell survival. Moreover, it is critical in many life-threatening pathologies, like cancer and cardiovascular diseases. In this context, conventional treatments of pathological angiogenesis suffer from several limitations, including low bioavailability, limited spatial and temporal resolution, lack of specificity and possible side effects. Recently, innovative strategies have been explored to overcome these drawbacks based on the use of exogenous nano-sized materials and the treatment of the endothelial tissue with optical or electrical stimuli. Here, conjugated polymer-based nanoparticles are proposed as exogenous photo-actuators, thus combining the advantages offered by nanotechnology with those typical of optical stimulation. Light excitation can achieve high spatial and temporal resolution, while permitting minimal invasiveness. Interestingly, the possibility to either enhance (≈+30%) or reduce (up to -65%) the angiogenic capability of model endothelial cells is demonstrated, by employing different polymer beads, depending on the material type and the presence/absence of the light stimulus. In vitro results reported here represent a valuable proof of principle of the reliability and efficacy of the proposed approach and should be considered as a promising step towards a paradigm shift in therapeutic angiogenesis.


Assuntos
Nanopartículas , Polímeros , Humanos , Polímeros/farmacologia , Células Endoteliais , Reprodutibilidade dos Testes , Neovascularização Patológica
10.
iScience ; 26(3): 106121, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36879812

RESUMO

Non-genetic photostimulation is a novel and rapidly growing multidisciplinary field that aims to induce light-sensitivity in living systems by exploiting exogeneous phototransducers. Here, we propose an intramembrane photoswitch, based on an azobenzene derivative (Ziapin2), for optical pacing of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). The light-mediated stimulation process has been studied by applying several techniques to detect the effect on the cell properties. In particular, we recorded changes in membrane capacitance, in membrane potential (Vm), and modulation of intracellular Ca2+ dynamics. Finally, cell contractility was analyzed using a custom MATLAB algorithm. Photostimulation of intramembrane Ziapin2 causes a transient Vm hyperpolarization followed by a delayed depolarization and action potential firing. The observed initial electrical modulation nicely correlates with changes in Ca2+ dynamics and contraction rate. This work represents the proof of principle that Ziapin2 can modulate electrical activity and contractility in hiPSC-CMs, opening up a future development in cardiac physiology.

11.
Nanoscale ; 15(25): 10808-10819, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37334549

RESUMO

Edible electronics is an emerging research field targeting electronic devices that can be safely ingested and directly digested or metabolized by the human body. As such, it paves the way to a whole new family of applications, ranging from ingestible medical devices and biosensors to smart labelling for food quality monitoring and anti-counterfeiting. Being a newborn research field, many challenges need to be addressed to realize fully edible electronic components. In particular, an extended library of edible electronic materials is required, with suitable electronic properties depending on the target device and compatible with large-area printing processes, to allow scalable and cost-effective manufacturing. In this work, we propose a platform for future low-voltage edible transistors and circuits that comprises an edible chitosan gating medium and inkjet-printed inert gold electrodes, compatible with low thermal budget edible substrates, such as ethylcellulose. We report the compatibility of the platform, characterized by critical channel features as low as 10 µm, with different inkjet-printed carbon-based semiconductors, including biocompatible polymers present in the picogram range per device. A complementary organic inverter is also demonstrated with the same platform as a proof-of-principle logic gate. The presented results offer a promising approach to future low-voltage edible active circuitry, as well as a testbed for non-toxic printable semiconductors.


Assuntos
Quitosana , Recém-Nascido , Humanos , Semicondutores , Celulose , Eletrônica
12.
Vascul Pharmacol ; 144: 106998, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35589009

RESUMO

Therapeutic neovascularization represents a promising strategy to rescue the vascular network and restore organ function in cardiovascular disorders (CVDs), including acute myocardial infarction, heart failure, peripheral artery disease, and brain stroke. Endothelial colony forming cells (ECFCs), which are mobilized in circulation upon an ischemic insult, are commonly regarded as the most suitable cellular tool to achieve therapeutic neovascularization. ECFCs can be genetically or pharmacologically manipulated to enhance their vasoreparative potential by boosting specific pro-angiogenic signalling pathways. However, optical stimulation represents the most reliable approach to control cellular activity because of its high selectivity and unprecedented spatio-temporal resolution. Herein, we discuss a novel strategy to drive ECFC angiogenic activity in ischemic tissues by combining geneless optical excitation with photosensitive organic semiconductors. We describe how photoexcitation of the conducting polymer poly(3-hexylthiophene-2,5-diyl), also known as P3HT, stimulates extracellular Ca2+ entry through Transient Receptor Potential Vanilloid 1 (TRPV1) channels upon the production of hydrogen peroxide (H2O2) in the cleft between the nanomaterial and the cell membrane. H2O2-induced TRPV1-dependent Ca2+ entry stimulates ECFC proliferation and tube formation, thereby providing the proof-of-concept that photoexcitation of organic semiconductors may offer a reliable strategy to stimulate ECFCs-dependent neovascularization in CVDs.


Assuntos
Peróxido de Hidrogênio , Neovascularização Fisiológica , Proliferação de Células , Células Cultivadas , Células Endoteliais/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Isquemia , Neovascularização Patológica , Neovascularização Fisiológica/fisiologia , Semicondutores , Cicatrização
13.
J Med Chem ; 65(10): 7324-7333, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35580334

RESUMO

The stimulation of sarcoplasmic reticulum calcium ATPase SERCA2a emerged as a novel therapeutic strategy to efficiently improve overall cardiac function in heart failure (HF) with reduced arrhythmogenic risk. Istaroxime is a clinical-phase IIb compound with a double mechanism of action, Na+/K+ ATPase inhibition and SERCA2a stimulation. Starting from the observation that istaroxime metabolite PST3093 does not inhibit Na+/K+ ATPase while stimulates SERCA2a, we synthesized a series of bioisosteric PST3093 analogues devoid of Na+/K+ ATPase inhibitory activity. Most of them retained SERCA2a stimulatory action with nanomolar potency in cardiac preparations from healthy guinea pigs and streptozotocin (STZ)-treated rats. One compound was further characterized in isolated cardiomyocytes, confirming SERCA2a stimulation and in vivo showing a safety profile and improvement of cardiac performance following acute infusion in STZ rats. We identified a new class of selective SERCA2a activators as first-in-class drug candidates for HF treatment.


Assuntos
Insuficiência Cardíaca , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Animais , Arritmias Cardíacas , Cálcio/metabolismo , Cobaias , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Ratos
14.
Cardiovasc Res ; 117(2): 472-483, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-32061134

RESUMO

AIMS: NOS1AP single-nucleotide polymorphisms (SNPs) correlate with QT prolongation and cardiac sudden death in patients affected by long QT syndrome type 1 (LQT1). NOS1AP targets NOS1 to intracellular effectors. We hypothesize that NOS1AP SNPs cause NOS1 dysfunction and this may converge with prolonged action-potential duration (APD) to facilitate arrhythmias. Here we test (i) the effects of NOS1 inhibition and their interaction with prolonged APD in a guinea pig cardiomyocyte (GP-CMs) LQT1 model; (ii) whether pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from LQT1 patients differing for NOS1AP variants and mutation penetrance display a phenotype compatible with NOS1 deficiency. METHODS AND RESULTS: In GP-CMs, NOS1 was inhibited by S-Methyl-L-thiocitrulline acetate (SMTC) or Vinyl-L-NIO hydrochloride (L-VNIO); LQT1 was mimicked by IKs blockade (JNJ303) and ß-adrenergic stimulation (isoproterenol). hiPSC-CMs were obtained from symptomatic (S) and asymptomatic (AS) KCNQ1-A341V carriers, harbouring the minor and major alleles of NOS1AP SNPs (rs16847548 and rs4657139), respectively. In GP-CMs, NOS1 inhibition prolonged APD, enhanced ICaL and INaL, slowed Ca2+ decay, and induced delayed afterdepolarizations. Under action-potential clamp, switching to shorter APD suppressed 'transient inward current' events induced by NOS1 inhibition and reduced cytosolic Ca2+. In S (vs. AS) hiPSC-CMs, APD was longer and ICaL larger; NOS1AP and NOS1 expression and co-localization were decreased. CONCLUSION: The minor NOS1AP alleles are associated with NOS1 loss of function. The latter likely contributes to APD prolongation in LQT1 and converges with it to perturb Ca2+ handling. This establishes a mechanistic link between NOS1AP SNPs and aggravation of the arrhythmia phenotype in prolonged repolarization syndromes.


Assuntos
Potenciais de Ação , Proteínas Adaptadoras de Transdução de Sinal/genética , Frequência Cardíaca , Células-Tronco Pluripotentes Induzidas/enzimologia , Canal de Potássio KCNQ1/genética , Mutação , Miócitos Cardíacos/enzimologia , Óxido Nítrico Sintase Tipo I/genética , Polimorfismo de Nucleotídeo Único , Síndrome de Romano-Ward/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Sinalização do Cálcio , Linhagem Celular , Predisposição Genética para Doença , Cobaias , Humanos , Canal de Potássio KCNQ1/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Fenótipo , Síndrome de Romano-Ward/diagnóstico , Síndrome de Romano-Ward/enzimologia , Síndrome de Romano-Ward/fisiopatologia , Fatores de Tempo
17.
Arrhythm Electrophysiol Rev ; 7(4): 232-237, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30588310

RESUMO

The occurrence of arrhythmia is often related to basic heart rate. Prognostic significance is associated with such a relationship; furthermore, heart rate modulation may result as an ancillary effect of therapy, or be considered as a therapeutic tool. This review discusses the cellular mechanisms underlying arrhythmia occurrence during tachycardia or bradycardia, considering rate changes per se or as a mirror of autonomic modulation. Besides the influence of steady-state heart rate, dynamic aspects of changes in rate and autonomic balance are considered. The discussion leads to the conclusion that the prognostic significance of arrhythmia relationship with heart rate, and the consequence of heart rate on arrhythmogenesis, may vary according to the substrate present in the specific case and should be considered accordingly.

18.
Front Physiol ; 9: 1893, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687114

RESUMO

Introduction: Increases in action potential duration (APD), genetic or acquired, and arrhythmias are often associated; nonetheless, the relationship between the two phenomena is inconstant, suggesting coexisting factors. ß-adrenergic activation increases sarcoplasmic reticulum (SR) Ca2+-content; angiotensin II (ATII) may increase cytosolic Ca2+ and ROS production, all actions stimulating RyRs opening. Here we test how APD interacts with ß-adrenergic and AT-receptor stimulation in facilitating spontaneous Ca2+ release events (SCR). Methods: Under "action potential (AP) clamp", guinea-pig cardiomyocytes (CMs) were driven with long (200 ms), normal (150 ms), and short (100 ms) AP waveforms at a CL of 500 ms; in a subset of CMs, all the 3 waveforms could be tested within the same cell. SCR were detected as inward current transients (ITI) following repolarization; ITI incidence and repetition within the same cycle were measured under increasing isoprenaline concentration ([ISO]) alone, or plus 100 nM ATII (30 min incubation+superfusion). Results: ITI incidence and repetition increased with [ISO]; at longer APs the [ISO]-response curve was shifted upward and ITI coupling interval was reduced. ATII increased ITI incidence more at low [ISO] and under normal (as compared to long) APs. Efficacy of AP shortening in suppressing ITI decreased in ATII-treated myocytes and at higher [ISO]. Conclusions: AP prolongation sensitized the SR to the destabilizing actions of ISO and ATII. Summation of ISO, ATII and AP duration effects had a "saturating" effect on SCR incidence, thus suggesting convergence on a common factor (RyRs stability) "reset" by the occurrence of spontaneous Ca2+ release events.

19.
Front Cardiovasc Med ; 5: 175, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30574507

RESUMO

Sudden cardiac death (SCD) in the young may often be the first manifestation of a genetic arrythmogenic disease that had remained undiagnosed. Despite the significant discoveries of the genetic bases of inherited arrhythmia syndromes, there remains a measurable fraction of cases where in-depth clinical and genetic investigations fail to identify the underlying SCD etiology. A few years ago, 2 cases of infants with recurrent cardiac arrest episodes, due to what appeared to be as a severe form of long QT syndrome (LQTS), came to our attention. These prompted a number of clinical and genetic research investigations that allowed us to identify a novel, closely associated to LQTS but nevertheless distinct, clinical entity that is now known as calmodulinopathy. Calmodulinopathy is a life-threatening arrhythmia syndrome, affecting mostly young individuals, caused by mutations in any of the 3 genes encoding calmodulin (CaM). Calmodulin is a ubiquitously expressed Ca2+ signaling protein that, in the heart, modulates several ion channels and participates in a plethora of cellular processes. We will hereby provide an overview of CaM's structure and function under normal and disease states, highlighting the genetic etiology of calmodulinopathy and the related disease mechanisms. We will also discuss the phenotypic spectrum of patients with calmodulinopathy and present state-of-the art approaches with patient-derived induced pluripotent stem cells that have been thus far adopted in order to accurately model calmodulinopathy in vitro, decipher disease mechanisms and identify novel therapies.

20.
Front Cardiovasc Med ; 5: 176, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619883

RESUMO

In spite of the widespread role of calmodulin (CaM) in cellular signaling, CaM mutations lead specifically to cardiac manifestations, characterized by remarkable electrical instability and a high incidence of sudden death at young age. Penetrance of the mutations is surprisingly high, thus postulating a high degree of functional dominance. According to the clinical patterns, arrhythmogenesis in CaM mutations can be attributed, in the majority of cases, to either prolonged repolarization (as in long-QT syndrome, LQTS phenotype), or to instability of the intracellular Ca2+ store (as in catecholamine-induced tachycardias, CPVT phenotype). This review discusses how mutations affect CaM signaling function and how this may relate to the distinct arrhythmia phenotypes/mechanisms observed in patients; this involves mechanistic interpretation of negative dominance and mutation-specific CaM-target interactions. Knowledge of the mechanisms involved may allow critical approach to clinical manifestations and aid in the development of therapeutic strategies for "calmodulinopathies," a recently identified nosological entity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA